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1. HISTORY AND BACKGROUND

To put our paper in context, we shall pick up the thread of the history
of mechanics in the later part of the 1800s. By that time, through the work
of many people, including Euler, Lagrange, Hamilton, Jacobi, and Routh,
it was well understood that the equations of mechanics are expressible in
either Hamiltonian or Lagrangian form.

The Lagrangian formulation of mechanics can be based on the varia-
tional principles behind Newton's fundamental laws of force balance
F=ma. One chooses a configuration space Q (a manifold, assumed to be
of finite dimension n to start the discussion) with coordinates denoted qi,
i=1, ..., n, that describe the configuration of the system under study. One
then forms the velocity phase space TQ (the tangent bundle of Q).
Coordinates on TQ are denoted (q1, ..., qn, q* 1, ..., q* n), and the Lagrangian is
regarded as a function L: TQ � R. In coordinates, one writes L(qi, q* i, t),
which is shorthand notation for L(q1, ..., qn, q* 1, ..., q* n, t). Usually, L is the
kinetic minus the potential energy of the system and one takes q* i=dqi�dt
to be the system velocity. The variational principle of Hamilton states that
the variation of the action is stationary at a solution:

$S=$ |
b

a
L(qi, q* i, t) dt=0. (1.1)

In this principle, one chooses curves qi (t) joining two fixed points in Q
over a fixed time interval [a, b], and calculates the action S, which is the
time integral of the Lagrangian, regarded as a function of this curve.
Hamilton's principle states that the action S has a critical point at a
solution in the space of curves. As is well known, Hamilton's principle is
equivalent to the Euler�Lagrange equations:

d
dt

�L
�q* i&

�L
�qi=0, i=1, ..., n. (1.2)
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If the system is subjected to external forces, these are to be added to the
right hand side of the Euler�Lagrange equations. For the case in which L
comprises kinetic minus potential energy, the Euler�Lagrange equations
reduce to a geometric form of Newton's second law. For Lagrangians that
are purely kinetic energy, it was already known in Poincare� 's time that the
corresponding solutions of the Euler�Lagrange equations are geodesics.
(This fact was certainly known to Jacobi by 1840, for example.)

To pass to the Hamiltonian formalism, one introduces the conjugate
momenta

pi=
�L
�q* i , i=1, ..., n, (1.3)

and makes the change of variables (qi, q* i) [ (qi, pi), by a Legendre trans-
formation. The Lagrangian is called regular when this change of variables
is invertible. The Legendre transformation introduces the Hamiltonian

H(qi, pi , t)= :
n

j=1

pj q* j=L(qi, q* i, t). (1.4)

One shows that the Euler�Lagrange equations are equivalent to Hamilton's
equations:

dqi

dt
=

�H
�pi

,
dpi

dt
=&

�H
�qi , (1.5)

where i=1, ..., n. There are analogous Hamiltonian partial differential
equations for field theories such as Maxwell's equations and the equations
of fluid and solid mechanics.

Hamilton's equations can be recast in Poisson bracket form as

F4 =[F, H], (1.6)

where the canonical Poisson brackets are given by

[F, G]= :
n

i=1
\�F

�qi

�G
�pi

&
�F
�pi

�G
�qi+ . (1.7)

Associated to any configuration space Q is a phase space T*Q called the
cotangent bundle of Q, which has coordinates (q1, ..., qn, p1 , ..., pn). On this
space, the canonical Poisson bracket is intrinsically defined in the sense
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that the value of [F, G] is independent of the choice of coordinates.
Because the Poisson bracket satisfies [F, G]=&[G, F] and in particular
[H, H]=0, we see that H4 =0; that is, energy is conserved along solutions
of Hamilton's equations. This is the most elementary of many deep and
beautiful conservation properties of mechanical systems.

Poincare� and the Euler equations. Poincare� played an enormous role in
the topics treated in the present paper. We mention a few of Poincare� 's
contributions that are relevant here. First is his work on the gravitating
fluid problem, continuing the line of investigation begun by MacLaurin,
Jacobi, and Riemann. Some solutions of this problem still bear his name
today. This work is summarized in Chandrasekhar [1967, 1977] (see
Poincare� [1885, 1890, 1892, 1901a] for the original treatments). This back-
ground led to his famous paper, Poincare� [1901b], in which he laid out
the basic equations of Euler type, including the rigid body, heavy top and
fluids as special cases. Abstractly, these equations are determined once one
is given a Lagrangian on a Lie algebra. We shall make some additional
historical comments on this situation below, after we present a few more
mechanical preliminaries. It is because of the paper Poincare� [1901b] that
the name Euler�Poincare� equations is now used for these equations.

To state the Euler�Poincare� equations, let g be a given Lie algebra and
let l : g � R be a given function (a Lagrangian), let ! be a point in g and
let f # g* be given forces (whose nature we shall explicate later). Then the
evolution of the variable ! is determined by the Euler�Poincare� equations.
Namely,

d
dt

$l
$!

=ad!*
$l
$!

+ f.

The notation is as follows: �l��! # g* (the dual vector space) is the
derivative of l with respect to !; we use partial derivative notation because
l is a function of the vector xi and because shortly l will be a function of
other variables as well. The map ad! : g � g is the linear map ' [ [!, '],
where [!, '] denotes the Lie bracket of ! and ', and where ad!* : g* � g*
is its dual (transpose) as a linear map. In the case that f =0, we will call
these equations the basic Euler�Poincare� equations.

These equations are valid for either finite or infinite dimensional Lie
algebras. For fluids, Poincare� was aware that one needs to use infinite
dimensional Lie algebras, as is clear in his paper Poincare� [1910]. He was
aware that one has to be careful with the signs in the equations; for
example, for rigid body dynamics one uses the equations as they stand, but
for fluids, one needs to be careful about the conventions for the Lie algebra
operation ad! ; cf. Chetayev [1941].
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To state the equations in the finite dimensional case in coordinates, one
must choose a basis e1 , ..., er of g (so dim g=r). Define, as usual, the
structure constants C d

ab of the Lie algebra by

[ea , eb]= :
r

d=1

C d
abed , (1.8)

where a, b run from 1 to r. If ! # g, its components relative to this basis are
denoted !a. If e1, ..., en, is the corresponding dual basis, then the com-
ponents of the differential of the Lagrangian l are the partial derivatives
�l��!a. The Euler�Poincare� equations in this basis are

d
dt

�l
�!b= :

r

a, d=1

C d
ab

�l
�!d !a+ fb . (1.9)

For example, consider the Lie algebra R3 with the usual vector cross
product. (Of course, this is the Lie algebra of the proper rotation group
in R3.) For l : R3 � R, the Euler�Poincare� equations become

d
dt

�l
�0

_0+f,

which generalize the Euler equations for rigid body motion.
These equations were written down for a certain class of Lagrangians l

by Lagrange [1788, Volume 2, Eq. A, p. 212], while it was Poincare�
[1901b] who generalized them (without reference to the ungeometric
Lagrange!) to an arbitrary Lie algebra. However, it was Lagrange who was
grappeling with the derivation and deeper understanding of the nature of
these equations. While Poincare� may have understood how to derive them
from other principles, he did not reveal this.

Of course, there was a lot of mechanics going on in the decades leading
up to Poincare� 's work and we shall comment on some of it below.
However, it is a curious historical fact that the Euler�Poincare� equations
were not pursued extensively until quite recently. While many authors
mentioned these equations and even tried to understand them more deeply
(see, e.g., Hamel [1904, 1949] and Chetayev [1941]), it was not until the
Arnold school that this understanding was at least partly achieved (see
Arnold [1966a, c] and Arnold [1988]) and was used for diagnosing hydro-
dynamical stability (e.g., Arnold [1966b]).

It was already clear in the last century that certain mechanical systems
resist the usual canonical formalism, either Hamiltonian or Lagrangian,
outlined in the first paragraph. The rigid body provides an elementary
example of this. In another example, to obtain a Hamiltonian description
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for ideal fluids, Clebsch [1857, 1859] found it necessary to introduce
certain nonphysical potentials.1

More About the Rigid Body. In the absence of external forces, the rigid
body equations are usually written as follows:

I104 1=(I2&I3) 0203 ,

I204 2=(I3&I1) 0301 , (1.10)

I304 3=(I1&I2) 0102 ,

where 0=(01 , 02 , 03) is the body angular velocity vector and I1 , I2 , I3

are the moments of inertia of the rigid body. Are these equations as written
Lagrangian or Hamiltonian in any sense? Since there are an odd number
of equations, they cannot be put in canonical Hamiltonian form.

One answer is to reformulate the equations on TSO(3) on T*SO(3), as
is classically done in terms of Euler angles and their velocities or conjugate
momenta, relative to which the equations are in Euler�Lagrange or canoni-
cal Hamiltonian form. However, this reformulation answers a different
question for a six dimensional system. We are interested in these structures
for the equations as given above.

The Lagrangian answer is easy: These equations have Euler�Poincare�
form on the Lie algebra R3 using the Lagrangian

l(0)= 1
2 (I1 02

1+I202
2+I302

3), (1.11)

which is the (rotational) kinetic energy of the rigid body.
One of our main messages is that the Euler�Poincare� equations possess

a natural variational principle. In fact, the Euler rigid body equations are
equivalent to the rigid body action principle

$Sred=$ |
b

a
l dt=0, (1.12)

where variations of 0 are restricted to be of the form

$0=74 +0_7, (1.13)

in which 7 is a curve in R3 that vanishes at the endpoints. As before, we
regard the reduced action Sred as a function on the space of curves, but
only consider variations of the form described. The equivalence of the rigid

6 HOLM, MARSDEN, AND RATIU

1 For modern accounts of Clebsch potentials and further references, see Holm and
Kupershmidt [1983], Marsden and Weinstein [1983], Marsden, Ratiu, and Weinstein
[1984a, b], Cendra and Marsden [1987], Cendra, Ibort, and Marsden [1987] and
Goncharov and Pavlov [1997].
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body equations and the rigid body action principle may be proved in the
same way as one proves that Hamilton's principle is equivalent to the
Euler�Lagrange equations: Since l(0)= 1

2 (I0, 0) , and I is symmetric, we
obtain

$ |
b

a
l dt=|

b

a
(I0, $0) dt

=|
b

a
(I0, 74 +0_7) dt

=|
b

a _�&
d
dt

I0, 7�+(I0, 0_7)&
=|

b

a �&
d
dt

I0+I0_0, 7� dt,

where we used integration by parts and the endpoint conditions 7(b)=
7(a)=0. Since 7 is otherwise arbitrary, (1.12) is equivalent to

&
d
dt

(I0)+I0_0=0,

which are Euler's equations.
Let us explain in concrete terms (that will be abstracted later) how to

derive this variational principle from the standard variational principle of
Hamilton.

We regard an element R # SO(3) giving the configuration of the body as
a map of a reference configuration B/R3 to the current configuration
R(B); the map R takes a reference or label point X # B to a current point
x=R(X) # R(B). When the rigid body is in motion, the matrix R is time-
dependent and the velocity of a point of the body is x* =R4 X=R4 R&1x.
Since R is an orthogonal matrix, R&1R4 and R4 R&1 are skew matrices, and
so we can write

x* =R4 R&1x=|_x, (1.14)

which defines the spatial angular velocity vector |. Thus, | is essentially
given by right translation of R4 to the identity.

The corresponding body angular velocity is defined by

0=R&1|, (1.15)
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so that 0 is the angular velocity relative to a body fixed frame. Notice that

R&1R4 X=R&1R4 R&1x=R&1(|_x)

=R&1|_R&1x=0_X, (1.16)

so that 0 is given by left translation of R4 to the identity. The kinetic energy
is obtained by summing up m |x* |2�2 (where | v | denotes the Euclidean
norm) over the body:

K= 1
2 |

B

\(x) |R4 X|2 d 3X, (1.17)

in which \ is a given mass density in the reference configuration. Since

|R4 X|=||_x|=|R&1(|_x)|=|0_X|,

K is a quadratic function of 0. Writing

K= 1
2 0TI0 (1.18)

defines the moment of inertia tensor I, which, provided the body does not
degenerate to a line, is a positive-definite (3_3) matrix, or better, a quad-
ratic form. This quadratic form can be diagonalized by a change of basis;
thereby defining the principal axes and moments of inertia. In this basis, we
write I=diag(I1 , I2 , I3). The function K is taken to be the Lagrangian of
the system on TSO(3) (and by means of the Legendre transformation we
obtain the corresponding Hamiltonian description on T*SO(3)). Notice
that K in equation (1.17) is left (not right) invariant on TSO(3). It follows
that the corresponding Hamiltonian is also left invariant.

In the Lagrangian framework, the relation between motion in R space
and motion in body angular velocity (or 0) space is as follows: The curve
R(t) # SO(3) satisfies the Euler�Lagrange equations for

L(R, R4 )= 1
2 |

B

\(X) |R4 X|2 d 3X, (1.19)

if and only if 0(t) defined by R&1R4 v=0_v for all v # R3 satisfies Euler's
equations

I04 =(I0)_0. (1.20)

8 HOLM, MARSDEN, AND RATIU
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An instructive proof of this relation involves understanding how to
reduce variational principles using their symmetry groups. By Hamilton's
principle, R(t) satisfies the Euler�Lagrange equations, if and only if

$ | L dt=0.

Let l(0)= 1
2 (I0) } 0, so that l(0)=L(R, R4 ) if R and 0 are related as

above. To see how we should transform Hamilton's principle, define the
skew matrix 0� by 0� v=0_v for any v # R3, and differentiate the relation
R&1R4 =0� with respect to R to get

&R&1($R) R&1R4 +R&1($R4 )=$0@. (1.21)

Let the skew matrix 7� be defined by

7� =R&1 $R, (1.22)

and define the vector 7 by

7� v=7_v. (1.23)

Note that

7�4 =&R&1R4 R&1 $R+R&1 $R4 ,

so

R&1 $R4 =7�4 +R&1R4 7� . (1.24)

Substituting (1.24) and (1.22) into (1.21) gives

&7� 0� +7�4 +0� 7� =$0@,

that is,

$0@=7�4 +[0� , 7� ]. (1.25)

The identity [0� , 7� ]=(0_7) � holds by Jacobi's identity for the cross
product and so

$0=74 +0_7. (1.26)

These calculations prove the following:

9EULER�POINCARE� AND SEMIDIRECT PRODUCTS
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Theorem 1.1. Hamilton's variational principle

$S=$ |
b

a
L dt=0 (1.27)

on TSO(3) is equivalent to the reduced variational principle

$Sred=$ |
b

a
l dt=0 (1.28)

on R3 where the variations $0 are of the form (1.26) with 7(a)=7(b)=0.

Hamiltonian Form. If, instead of variational principles, we concentrate
on Poisson brackets and drop the requirement that they be in the canoni-
cal form, then there is also a simple and beautiful Hamiltonian structure
for the rigid body equations that is now well know.2 To recall this, intro-
duce the angular momenta

6i=Ii0i=
�L
�0i

, i=1, 2, 3, (1.29)

so that the Euler equations become

64 1=
I2&I3

I2 I3

62 63 ,

64 2=
I2&I1

I3 I1

63 61 , (1.30)

64 3=
I1&I2

I1 I2

61 62 ,

that is,

64 =6_0. (1.31)

Introduce the following rigid body Poisson bracket on functions of the 6$s:

[F, G](6)=&6 } ({6 F_{6 G) (1.32)

and the Hamiltonian

H=
1
2 \

6 2
1

I1

+
6 2

2

I2

+
6 2

3

I3 + . (1.33)

One checks that Euler's equations are equivalent to F4 =[F, H].

10 HOLM, MARSDEN, AND RATIU

2 See Marsden and Ratiu [1994] for details, references, and the history of this structure.
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The rigid body variational principle and the rigid body Poisson bracket
are special cases of general constructions associated to any Lie algebra g.
Since we have already described the general Euler�Poincare� construction
on g, we turn next to the Hamiltonian counterpart on the dual space.

The Lie�Poisson Equations. Let F, G be real valued functions on the
dual space g*. Denoting elements of g* by +, let the functional derivative
of F at + be the unique element $F�$+ of g defined by

lim
= � 0

1
=

[F(++=$+)&F(+)]=�$+,
$F
$+�, (1.34)

for all $+ # g*, where ( , ) denotes the pairing between g* and g. Define
the (\) Lie�Poisson brackets by

[F, G]\ (+)=\�+, _$F
$+

,
$G
$+&�. (1.35)

Using the coordinate notation introduced above, the (\) Lie�Poisson
brackets become

[F, G]\ (+)=\ :
r

a, b, d=1

Cd
ab +d

�F
�+a

�G
�+b

, (1.36)

where +=�r
d=1 +ded.

The Lie�Poisson equations, determined by F4 =[F, H] read

+* a=\ :
r

b, d=1

C d
ab+d

�H
�+b

,

or intrinsically,

+* =�ad*�H��+ +. (1.37)

This setting of mechanics is a special case of the general theory of systems
on Poisson manifolds, for which there is now an extensive theoretical
development. (See Guillemin and Sternberg [1984] and Marsden and
Ratiu [1994] for a start on this literature.) There is an especially important
feature of the rigid body bracket that carries over to general Lie algebras,
namely, Lie�Poisson brackets arise from canonical brackets on the cotangent
bundle (phase space) T*G associated with a Lie group G which has g as its
associated Lie algebra.

For a rigid body which is free to rotate about its center of mass, G is the
(proper) rotation group SO(3). The choice of T*G as the primitive phase
space is made according to the classical procedures of mechanics described
earlier. For the description using Lagrangian mechanics, one forms the

11EULER�POINCARE� AND SEMIDIRECT PRODUCTS
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velocity-phase space TSO(3). The Hamiltonian description on T*G is then
obtained by the Legendre transformation.

The passage from T*G to the space of 6's (body angular momentum
space) is determined by left translation on the group. This mapping is an
example of a momentum map; that is, a mapping whose components are the
``Noether quantities'' associated with a symmetry group. The map from
T*G to g* being a Poisson (canonical) map is a general fact about momen-
tum maps. The Hamiltonian point of view of all this is again a well
developed subject.

Geodesic Motion. As emphasized by Arnold [1966a], in many interest-
ing cases, the Euler�Poincare� equations on a Lie algebra g correspond to
geodesic motion on the corresponding group G. We shall explain the rela-
tionship between the equations on g and on G shortly, in Theorem 1.2.
Similarly, on the Hamiltonian side, the preceding paragraphs explained the
relation between the Hamiltonian equations on T*G and the Lie�Poisson
equations on g*. However, the issue of geodesic motion is simple: if the
Lagrangian or Hamiltonian on g or g* is purely quadratic, then the corre-
sponding motion on the group is geodesic motion.

More History. The Lie�Poisson bracket was discovered by Sophus Lie
(Lie [1890], Vol. II, p. 237). However, Lie's bracket and his related work
was not given much attention until the work of Kirillov, Kostant, and
Souriau (and others) revived it in the mid-1960s. Meanwhile, it was noticed
by Pauli and Martin around 1950 that the rigid body equations are in
Hamiltonian form using the rigid body bracket, but they were apparently
unaware of the underlying Lie theory. It would seem that while Poincare�
was aware of Lie theory, in his work on the Euler equations he was
unaware of Lie's work on Lie�Poisson structures. He also seems not to
have been aware of the variational structure of the Euler equations.

The Heavy Top. Another system important to Poincare� and also for us
in this paper is the heavy top; that is, a rigid body with a fixed point in a
gravitational field. For the Lie�Poisson description, the underlying Lie
algebra, surprisingly, consists of the algebra of infinitesimal Euclidean
motions in R3. These do not arise as actual Euclidean motions of the body
since the body has a fixed point! As we shall see, there is a close parallel
with the Poisson structure for compressible fluids.

The basic phase space we start with is again T*SO(3). In this space, the
equations are in canonical Hamiltonian form. Gravity breaks the symmetry
and the system is no longer SO(3) invariant, so it cannot be written
entirely in terms of the body angular momentum 6. One also needs to
keep track of 1, the ``direction of gravity'' as seen from the body (1=R&1k
where the unit vector k points upward and R is the element of SO(3)

12 HOLM, MARSDEN, AND RATIU
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describing the current configuration of the body). The equations of motion
are

64 1=
I2&I3

I2 I3

62 63+Mgl(1 2/3&1 3/2),

64 2=
I3&I1

I3 I2

63 61+Mgl(1 3/1&1 1/3), (1.38)

64 3=
I1&I2

I1 I2

61 62+Mgl(1 1/2&1 2/1),

or, in vector notation,

64 =6_0+Mgl1_/, (1.39)

and

14 =1_0, (1.40)

where M is the body's mass, g is the acceleration of gravity, / is the unit
vector on the line connecting the fixed point with the body's center of mass,
and l is the length of this segment.

The Lie algebra of the Euclidean group is se(3)=R3_R3 with the Lie
bracket

[(!, u), (', v)]=(!_', !_v&'_u). (1.41)

We identify the dual space with pairs (6, 1); the corresponding (&)
Lie�Poisson bracket called the heavy top bracket is

[F, G](6, 1)=&6 } ({6 F_{6G)&1 } ({6 F_{1G&{6 G_{1F ).

(1.42)

The above equations for 6, 1 can be checked to be equivalent to

F4 =[F, H], (1.43)

where the heavy top Hamiltonian

H(6, 1)=
1
2 \

6 2
1

I1

+
6 2

2

I2

+
6 2

3

I3 ++Mgl1 } /. (1.44)

is the total energy of the body (see, for example, Sudarshan and Mukunda
[1974]).
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The Lie algebra of the Euclidean group has a structure which is a special
case of what is called a semidirect product. Here it is the product of the
group of rotations with the translation group. It turns out that semidirect
products occur under rather general circumstances when the symmetry in
T*G is broken. In particular, there are similarities in structure between the
Poisson bracket for compressible flow and that for the heavy top. The
general theory for semidirect products will be reviewed shortly.

A Kaluza�Klein Form for the Heavy Top. We make a remark about the
heavy top equations that is relevant for later purposes. Namely, since the
equations have a Hamiltonian that is of the form kinetic plus potential, it
is clear that the equations are not of Lie�Poisson form on so(3)*, the dual
of the Lie algebra of SO(3) and correspondingly, are not geodesic
equations on SO(3). While the equations are Lie�Poisson on se(3)*, the
Hamiltonian is not quadratic, so again the equations are not geodesic equa-
tions on SE(3).

However, they can be viewed a different way so that they become
Lie�Poisson equations for a different group and with a quadratic
Hamiltonian. In particular, they are the reduction of geodesic motion.
To effect this, one changes the Lie algebra from se(3) to the product
se(3)_so(3). The dual variables are now denoted 6, 1, /. We regard the
variable / as a momentum conjugate to a new variable, namely a ghost
element of the rotation group in such a way that / is a constant of the motion;
in Kaluza�Klein theory for charged particles on thinks of the charge this way,
as being the momentum conjugate to a (ghost) cyclic variable.

We modify the Hamiltonian by replacing 1 } / by, for example,
1 } /+&1&2+&/&2, or any other terms of this sort that convert the poten-
tial energy into a positive definite quadratic form in 1 and /. The added
terms, being Casimir functions, do not affect the equations of motion.
However, now the Hamiltonian is purely quadratic and hence comes from
geodesic motion on the group SE(3)_SO(3). Notice that this construction
is quite different from that of the well-known Jacobi metric method.

Later on in our study of continuum mechanics, we shall repeat this con-
struction to achieve geodesic form for some other interesting continuum
models. Of course one can also treat a heavy top that is charged or has a
magnetic moment using these ideas.

Incompressible Fluids. Arnold [1966a] showed that the Euler equations
for an incompressible fluid could be given a Lagrangian and Hamiltonian
description similar to that for the rigid body. His approach3 has the

14 HOLM, MARSDEN, AND RATIU

3 Arnold's approach is consistent with what appears in the thesis of Ehrenfest from around
1904; see Klein [1970]. However, Ehrenfest bases his principles on the more sophisticated
curvature principles of Gauss and Hertz.



File: DISTL2 172115 . By:CV . Date:11:06:98 . Time:10:43 LOP8M. V8.B. Page 01:01
Codes: 3180 Signs: 2586 . Length: 45 pic 0 pts, 190 mm

appealing feature that one sets things up just the way Lagrange and
Hamilton would have done: one begins with a configuration space Q,
forms a Lagrangian L on the velocity phase space TQ and then Legendre
transforms to a Hamiltonian H on the momentum phase space T*Q. Thus,
one automatically has variational principles, etc. For ideal fluids, Q=G is
the group Diffvol(D) of volume preserving transformations of the fluid
container (a region D in R2 or R3, or a Riemannian manifold in general,
possibly with boundary). Group multiplication in G is composition.
AAA The reason we select G=Diffvol(D) as the configuration space is
similar to that for the rigid body; namely, each . in G is a mapping of D

to D which takes a reference point X # D to a current point x=.(X) # D;
thus, knowing . tells us where each particle of fluid goes and hence gives
us the current fluid configuration. We ask that . be a diffeomorphism to
exclude discontinuities, cavitation, and fluid interpenetration, and we ask
that . be volume preserving to correspond to the assumption of incom-
pressibility.

A motion of a fluid is a family of time-dependent elements of G, which
we write as x=.(X, t). The material velocity field is defined by V(X, t)=
�.(X, t)��t, and the spatial velocity field is defined by v(x, t)=V(X, t)
where x and X are related by x=.(X, t). If we suppress ``t'' and write .*
for V, note that

v=.* b .&1 i.e., vt=Vt b .&1
t , (1.45)

where .t(x)=.(X, t). We can regard (1.45) as a map from the space of
(., .* ) (material or Lagrangian description) to the space of v's (spatial or
Eulerian description). Like the rigid body, the material to spatial map
(1.45) takes the canonical bracket to a Lie�Poisson bracket; one of our
goals is to understand this reduction. Notice that if we replace . by . b '
for a fixed (time-independent) ' # Diffvol(D), then .* b .&1 is independent of
'; this reflects the right invariance of the Eulerian description (v is invariant
under composition of . by ' on the right). This is also called the particle
relabeling symmetry of fluid dynamics. The spaces TG and T*G represent
the Lagrangian (material) description and we pass to the Eulerian (spatial)
description by right translations and use the (+) Lie�Poisson bracket. One
of the things we shall explain later is the reason for the switch between
right and left in going from the rigid body to fluids.

The Euler equations for an ideal, incompressible, homogeneous fluid
moving in the region D are

�v
�t

+(v } {) v=&{p (1.46)

with the constraint div v=0 and boundary conditions: v is tangent to �D.

15EULER�POINCARE� AND SEMIDIRECT PRODUCTS
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The pressure p is determined implicitly by the divergence-free (volume
preserving) constraint div v=0. The associated Lie algebra g is the space
of all divergence-free vector fields tangent to the boundary. This Lie
algebra is endowed with the negative Jacobi�Lie bracket of vector fields
given by

[v, w] i
L= :

n

j=1
\w j �vi

�x j&v j �wi

�x j+ . (1.47)

(The subscript L on [ } , } ] refers to the fact that it is the left Lie algebra
bracket on g. The most common convention for the Jacobi�Lie bracket of
vector fields, also the one we adopt, has the opposite sign.) We identify g
and g* by using the pairing

(v, w) =|
D

v } w d 3x. (1.48)

Hamiltonian Structure for Fluids. Introduce the (+) Lie�Poisson
bracket, called the ideal fluid bracket, on functions of v by

[F, G](v)=|
D

v } _$F
$v

,
$G
$v&L

d 3x, (1.49)

where $F�$v is defined by

lim
= � 0

1
=

[F(v+= $v)&F(v)]=|
D \$v }

$F
$v + d 3x. (1.50)

With the energy function chosen to be the kinetic energy,

H(v)= 1
2 |

D

|v|2 d 3x, (1.51)

one can verify that the Euler equations (1.46) are equivalent to the Poisson
bracket equations

F4 =[F, H] (1.52)

for all functions F on g. For this, one uses the orthogonal decomposition
w=Pw+{p of a vector field w into a divergence-free part Pw in g and a
gradient. The Euler equations can be written as

�v
�t

+P(v } {v)=0. (1.53)

16 HOLM, MARSDEN, AND RATIU
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One can also express the Hamiltonian structure in terms of the vorticity
as a basic dynamic variable and show that the preservation of coadjoint
orbits amounts to Kelvin's circulation theorem. We shall see a Lagrangian
version of this property later in the paper. Marsden and Weinstein [1983]
show that the Hamiltonian structure in terms of Clebsch potentials fits
naturally into this Lie�Poisson scheme, and that Kirchhoff's Hamiltonian
description of point vortex dynamics, vortex filaments, and vortex patches
can be derived in a natural way from the Hamiltonian structure described
above.

Lagrangian Structure for Fluids. The general framework of the Euler�
Poincare� and the Lie�Poisson equations gives other insights as well. For
example, this general theory shows that the Euler equations are derivable
from the ``variational principle''

$ |
b

a
|

D

1
2 |v|2 d 3x=0

which should hold for all variations $v of the form

$v=u* +[u, v]L

where u is a vector field (representing the infinitesimal particle displace-
ment) vanishing at the temporal endpoints. The constraints on the allowed
variations of the fluid velocity field are commonly known as ``Lin
constraints'' and their nature was clarified by Newcomb [1962] and
Bretherton [1970]. This itself has an interesting history, going back to
Ehrenfest, Boltzmann, and Clebsch, but again, there was little if any
contact with the heritage of Lie and Poincare� on the subject.

The Basic Euler�Poincare� Equations. We now recall the abstract deriva-
tion of the ``basic'' Euler�Poincare� equations (i.e., the Euler�Poincare�
equations with no forcing or advected parameters) for left-invariant
Lagrangians on Lie groups (see Marsden and Scheurle [1993a, b],
Marsden and Ratiu [1994], and Bloch et al. [1996]).

Theorem 1.2. Let G be a Lie group and L: TG � R a left (respectively,
right) invariant Lagrangian. Let l : g � R be its restriction to the tangent
space at the identity. For a curve g(t) # G, let !(t)= g(t)&1 g* (t); i.e.,
!(t)=Tg(t)Lg(t)&1 g* (t) (respectively, !(t)= g* (t) g(t)&1). Then the following
are equivalent:

17EULER�POINCARE� AND SEMIDIRECT PRODUCTS
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(i) Hamilton's principle

$ |
b

a
L(g(t), g* (t)) dt=0 (1.54)

holds, as usual, for variations $g(t) of g(t) vanishing at the endpoints.

(ii) The curve g(t) satisfies the Euler�Lagrange equations for L on G.

(iii) The ``variational'' principle

$ |
b

a
l(!(t)) dt=0 (1.55)

holds on g, using variations of the form

$!='* \[!, '], (1.56)

where ' vanishes at the endpoints (+ corresponds to left invariance and &
to right invariance).4

(iv) The basic Euler�Poincare� equations hold

d
dt

$l
$!

=\ad!*
$l
$!

. (1.57)

Basic Ideas of the Proof. First of all, the equivalence of (i) and (ii)
holds on the tangent bundle of any configuration manifold Q, by the
general Hamilton principle. To see that (i) and (iii) are equivalent, one
needs to compute the variations $! induced on != g&1g* =TLg&1 g* by a
variation of g. We will do this for matrix groups; see Bloch, Krishnaprasad,
Marsden, and Ratiu [1994] for the general case. To calculate this, we need
to differentiate g&1g* in the direction of a variation $g. If $g=dg�d= at ==0,
where g is extended to a curve g= , then,

$!=
d
d=

g&1 d
dt

g,

while if '= g&1$g, then

'* =
d
dt

g&1 d
d=

g.

The difference $!&'* is thus the commutator [!, '].

18 HOLM, MARSDEN, AND RATIU

4 Because there are constraints on the variations, this principle is more like a Lagrange
d'Alembert principle, which is why we put ``variational'' in quotes. As we shall explain, such
problems are not literally variational.
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To complete the proof, we show the equivalence of (iii) and (iv) in the
left-invariant case. Indeed, using the definitions and integrating by parts
produces,

$ | l(!) dt=|
$l
$!

$! dt=|
$l
$!

('* +ad! ') dt

=| _&
d
dt \

$l
$!++ad!*

$l
$!& ' dt,

so the result follows. K

There is of course a right invariant version of this theorem in which
!= g* g&1 and the Euler�Poincare� equations acquire appropriate minus
signs as in Eq. (1.57). We shall go into this in detail later.

Since the Euler�Lagrange and Hamilton equations on TQ and T*Q are
equivalent in the regular case, it follows that the Lie�Poisson and Euler�
Poincare� equations are then also equivalent. To see this directly, we make
the following Legendre transformation from g to g*:

+=
$l
$!

, h(+)=(+, !)&l(!).

Note that

$h
$+

=!+�+,
$!
$+�&� $l

$!
,

$!
$+�=!

and so it is now clear that the Lie�Poisson equations (1.37) and the Euler�
Poincare� equations (1.57) are equivalent.

We close this paragraph by mentioning the geodesic property of the
basic Euler�Poincare� form. When l is a metric on TG, the basic Euler-
�Poincare� equations are the geodesic spray equations for geodesic motion
on the group G with respect to that metric. For discussions of this property
in applications, see, e.g., Arnold [1966a] for the Euler equations of an
incompressible ideal fluid, and Ovsienko and Khesin [1987] for the KdV
shallow water equation. (An account of the latter case from the Euler�
Poincare� viewpoint may also be found in Marsden and Ratiu [1994].)
Zeitlin and Pasmanter [1994] discuss the geodesic property for certain
ideal geophysical fluid flows; Zeitlin and Kambe [1993] and Ono [1995a,
1995b] discuss it for ideal MHD; and Kouranbaeva [1997] for the
integrable Camassa�Holm equation. From one viewpoint, casting these
systems into basic Euler�Poincare� form explains why they share the
geodesic property.

19EULER�POINCARE� AND SEMIDIRECT PRODUCTS
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Lie-Poisson Systems on Semidirect Products. As we described above,
the heavy top is a basic example of a Lie�Poisson Hamiltonian system
defined on the dual of a semidirect product Lie algebra. The general study
of Lie�Poisson equations for systems on the dual of a semidirect product
Lie algebra grew out of the work of many authors including Sudarshan
and Mukunda [1974], Vinogradov and Kupershmidt [1977], Ratiu
[1980], Guillemin and Sternberg [1980], Ratiu [1981, 1982], Marsden
[1982], Marsden, Weinstein, Ratiu, Schmidt, and Spencer [1983], Holm
and Kupershmidt [1983], Kupershmidt and Ratiu [1983], Holmes and
Marsden [1983], Marsden, Ratiu, and Weinstein [1984a, b], Guillemin
and Sternberg [1984], Holm, Marsden, Ratiu, and Weinstein [1985],
Abarbanel, Holm, Marsden, and Ratiu [1986], and Marsden, Misiolek,
Perlmutter, and Ratiu [1997]. As these and related references show, the
Lie�Poisson equations apply to a wide variety of systems such as the heavy
top, compressible flow, stratified incompressible flow, and MHD (magneto-
hydrodynamics). We review this theory in Section 2 below.

In each of the above examples as well as in the general theory, one can
view the given Hamiltonian in the material representation as one that
depends on a parameter; this parameter becomes dynamic when reduction
is performed; this reduction amounts in many examples to expressing the
system in the spatial representation.

Goals of This Article. The first goal of this article is to study a Lagrangian
analogue of the Hamiltonian semidirect product theory. The idea is to
carry out a reduction for a Lagrangian that depends on a parameter and
to use the ideas of reduction of variational principles from Marsden and
Scheurle [1993a, b] and Bloch, Krishnaprasad, Marsden, and Ratiu
[1996] to directly reduce the problem to one that parallels Lie�Poisson
systems on the duals of semidirect products. We call the resulting equations
the Euler�Poincare� equations since, as we have explained, Poincare�
[1901b] came rather close to this general picture. These equations general-
ize the basic Euler�Poincare� equations on a Lie algebra in that they depend
on a parameter and this parameter in examples has the interpretation of
being advected, or Lie dragged, as is the density in compressible flow.

One of the reasons this process is interesting and cannot be derived
directly from its Hamiltonian counterpart by means of the Legendre
transformation is that in many examples, such as the heavy top, the
Hamiltonian describing the Lie�Poisson dynamics is degenerate; that is,
the Legendre transformation is not invertible.

A second major goal is to prove a version of the Noether theorem in an
action principle formulation that leads immediately to a Kelvin circulation
type theorem for continuum mechanics. We call this general formulation
the Kelvin�Noether theorem.

20 HOLM, MARSDEN, AND RATIU
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Finally, we provide a number of applications of the Euler�Poincare�
equations in ideal continuum dynamics which illustrate the power of this
approach in unifying various known models, as well as in formulating new
models. We also discuss some circumstances when the equations can be
cast into the form of geodesics on certain infinite dimensional groups.

Outline of the Remainder of This Article. In the next section we review
the semidirect product theory for Hamiltonian systems. Then in Section 3
we consider the Lagrangian counterpart to this theory. Section 4 discusses
the Kelvin�Noether theorem for the Euler�Poincare� equations. Section 5
illustrates the general theory in the example of the heavy top. We introduce
the Euler�Poincare� equations for continua in Section 6 and consider their
applications to compressible flow (including MHD and adiabatic Maxwell-
fluid plasmas) in Section 7. Various approximate forms of the shallow
water equations, such as the Boussinesq equations, the Camassa�Holm
equation and its new higher-dimensional variants are developed in Section 8. In
other publications, the Maxwell�Vlasov equations will be considered as well as
a general framework for the theory of reduction by stages.

In the remainder of this paper we assume that the reader is familiar with
Lie�Poisson Hamiltonian systems defined on duals of Lie algebras and the
Lie�Poisson reduction theorem, reviewed above. We refer to Marsden and
Ratiu [1994] for a detailed exposition of these matters.

2. HAMILTONIAN SEMIDIRECT PRODUCT THEORY

We first recall how the Hamiltonian theory proceeds for systems defined
on semidirect products. We present the abstract theory, but of course
historically this grew out of the examples, especially the heavy top and
compressible flow.

Generalities on Semidirect Products. We begin by recalling some defini-
tions and properties of semidirect products. Let V be a vector space and
assume that the Lie group G acts on the left by linear maps on V (and
hence G also acts on the left on its dual space V*). As sets, the semidirect
product S=G �S V is the Cartesian product S=G_V whose group multi-
plication is given by

(g1 , v1)(g2 , v2)=(g1 g2 , v1+ g1 v2), (2.1)

where the action of g # G on v # V is denoted simply as gv. The identity
element is (e, 0) where e is the identity in G. We record for convenience the
inverse of an element:

(g, v)&1=(g&1, &g&1v). (2.2)

21EULER�POINCARE� AND SEMIDIRECT PRODUCTS
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The Lie algebra of S is the semidirect product Lie algebra, s=g �S V,
whose bracket has the expression

[(!1 , v1), (!2 , v2)]=([!1 , !2], !1v2&!2v1), (2.3)

where we denote the induced action of g on V by concatenation, as in !1v2 .
Below we will need the formulae for the adjoint and the coadjoint

actions for semidirect products. We denote these and other actions by
simple concatenation; so they are expressed as (see, e.g., Marsden, Ratiu,
and Weinstein [1984a, b])

(g, v)(!, u)=(g!, gu&(g!) v), (2.4)

and

(g, v)(+, a)=(g++\v*(ga), ga), (2.5)

where (g, v) # S=G_V, (!, u) # s=g_V, (+, a) # s*=g*_V*, g!=Adg !,
g+=Ad*g&1 +, ga denotes the induced left action of g on a (the left action
of G on V induces a left action of G on V*��the inverse of the transpose
of the action on V), \v : g � V is the linear map given by \v(!)=!v, and
\v*: V* � g* is its dual.

Important Notation. For a # V*, we shall write, for notational con-
venience,

\v*a=v h a # g*,

which is a bilinear operation in v and a. Using this notation, the above
formula for the coadjoint action reads

(g, v)(+, a)=(g++v h (ga), ga).

We shall also denote actions of groups and Lie algebras by simple con-
catenation. For example, the g-action on g* and V*, which is defined as
minus the dual map of the g-action on g and V respectively, is denoted by
!+ and !a for ! # g, + # g*, and a # V*.

Using this concatenation notation for Lie algebra actions provides the
following alternative expression of the definition of v h a # g*: For all
v # V, a # V* and ' # g, we define

('a, v) =&(v h a, ').

Left versus Right. When working with various models of continuum
mechanics and plasmas it is convenient to work with right representations

22 HOLM, MARSDEN, AND RATIU
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of G on the vector space V (as in, for example, Holm, Marsden, and Ratiu
[1986]). We shall denote the semidirect product by the same symbol
S=G �S V, the action of G on V being denoted by vg. The formulae
change under these conventions as follows. Group multiplication (the
analog of (2.1)) is given by

(g1 , v1)(g2 , v2)=(g1 g2 , v2+v1 g2), (2.6)

and the Lie algebra bracket on s=g �S V the analog of (2.3)) has the
expression

[(!1 , v1), (!2 , v2)]=([!1 , !2], v2!1&v2 !1), (2.7)

where we denote the induced action of g on V by concatenation, as in v1!2 .
The adjoint and coadjoint actions have the formulae (analogs of (2.4) and
(2.5))

(g, v)(!, u)=(g!, (u+v!) g&1), (2.8)

(g, v)(+, a)=(g++(vg&1) h (ag&1), ag&1), (2.9)

where, as usual, g!=Adg !, g+=Ad*g&1 +, ag denotes the inverse of the
dual isomorphism defined by g # G (so that g [ ag is a right action). Note
that the adjoint and coadjoint actions are left actions. In this case, the g-
actions on g* and V* are defined as before to be minus the dual map given
by the g-actions on g and V and are denoted by !+ (because it is a left
action) and a! (because it is a right action) respectively.

Lie�Poisson Brackets and Hamiltonian Vector Fields. For a left repre-
sentation of G on V the \ Lie�Poisson bracket of two functions
f, k: s* � R is given by

[ f, k]\ (+, a)=\�+, _ $f
$+

,
$k
$+&�\�a,

$f
$+

$k
$a

&
$k
$+

$f
$a� (2.10)

where $f�$+ # g, and $f�$a # V are the functional derivatives of f. The
Hamiltonian vector field of h: s* � R has the expression

Xh(+, a)=�\ad*$h�$+ +&
$h
$a

h a, &
$h
$+

a+ . (2.11)

Thus, Hamilton's equations on the dual of a semidirect product are given
by
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+* =�ad*$h�$+ +\
$h
$a

h a, (2.12)

a* =\
$h
$+

a, (2.13)

where overdot denotes time derivative. For right representations of G on V
the above formulae change to:

[ f, k]\ (+, a)=\�+, _ $f
$+

,
$k
$+&���a,

$k
$a

$f
$+

&
$f
$a

$k
$+�, (2.14)

Xh(+, a)=�\ad*$h�$+ ++
$h
$a

h a, a
$h
$++ , (2.15)

+* =�ad*$h�$+ +�
$h
$a

h a, (2.16)

a* =�a
$h
$+

. (2.14)

Symplectic Actions by Semidirect Products. To avoid a proliferation of
signs, in this section consider all semidirect products to come from a left
representation. Of course if the representation is from the right, there are
similar formulae.

We consider a symplectic action of S on a symplectic manifold P and
assume that this action has an equivariant momentum map JS : P � s*.
Since V is a (normal) subgroup of S, it also acts on P and has a momen-
tum map JV : P � V* given by

JV=i*V b JS ,

where iV : V � s is the inclusion v [ (0, v) and i*V : s* � V* is its dual. We
think of this merely as saying that JV is the second component of JS .

We can regard G as a subgroup of S by g [ (g, 0). Thus, G also has a
momentum map that is the first component of JS but this will play a
secondary role in what follows. On the other hand, equivariance of JS

under G implies the following relation for JV :

JV (gz)= gJV (z) (2.18)

where we denote the appropriate action of g # G on an element by concate-
nation, as before. To prove (2.18), one uses the fact that for the coadjoint
action of S on s* the second component is just the dual of the given action
of G on V.
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The Classical Semidirect Product Reduction Theorem. In a number of
interesting applications such as compressible fluids, the heavy top, MHD,
etc., one has two symmetry groups that do not commute and thus the com-
muting reduction by stages theorem of Marsden and Weinstein [1974]
does not apply. In this more general situation, it matters in what order one
performs the reduction, which occurs, in particular for semidirect products.
The main result covering the case of semidirect products has a complicated
history, with important early contributions by many authors, as we have
listed in the introduction. The final version of the theorem as we shall use
it, is due to Marsden, Ratiu, and Weinstein [1984a, b].

The semidirect product reduction theorem states, roughly speaking, that
for the semidirect product S=G �S V where G is a group acting on a vec-
tor space V and S is the semidirect product, one can first reduce T*S by
V and then by G and thereby obtain the same result as when reducing by
S. As above, we let s=g �S V denote the Lie algebra of S. The precise
statement is as follows.

Theorem 2.1 (Semidirect Product Reduction Theorem). Let S=
G �S V, choose _=(+, a) # g*_V*, and reduce T*S by the action of S at _
giving the coadjoint orbit O_ through _ # s*. There is a symplectic dif-
feomorphism between O_ and the reduced space obtained by reducing T*G by
the subgroup Ga (the isotropy of G for its action on V* at the point a # V*)
at the point + | ga where ga is the Lie algebra of Ga .

Reduction by Stages. This result is a special case of a theorem on reduc-
tion by stages for semidirect products acting on a symplectic manifold (see
Marsden, Misiolek, Perlmutter, and Ratiu [1997] for this and more
general results and see Leonard and Marsden [1997] for an application to
underwater vehicle dynamics).

As above, consider a symplectic action of S on a symplectic manifold P
and assume that this action has an equivariant momentum map
JS : P � s*. As we have explained, the momentum map for the action of V
is the map JV : P � V* given by JV=i*V b JS .

We carry out the reduction of P by S at a regular value _=(+, a) of the
momentum map JS for S in two stages using the following procedure.
First, reduce P by V at the value a (assume it to be a regular value) to get
the reduced space Pa=J&1

V (a)�V. Second, form the group Ga consisting of
elements of G that leave the point a fixed using the action of G on V*. One
shows (and this step is not trivial) that the group Ga acts on Pa and has
an induced equivariant momentum map Ja : Pa � g*a , where ga is the Lie
algebra of Ga , so one can reduce Pa at the point +a :=+ | ga to get the
reduced space (Pa)+a

=J&1
a (+a)�(Ga)+a

.
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Theorem 2.2 (Reduction by Stages for Semidirect Products). The
reduced space (Pa)mua

is symplectically diffeomorphic to the reduced space P_

obtained by reducing P by S at the point _=(+, a).

Combined with the cotangent bundle reduction theorem (see Abraham
and Marsden [1978] and Marsden [1992] for an exposition and references),
the semidirect product reduction theorem is a useful tool. For example,
using these tools, one sees readily that the generic coadjoint orbits for the
Euclidean group are cotangent bundles of spheres with the associated
coadjoint orbit symplectic structure given by the canonical structure plus a
magnetic term.

Semidirect Product Reduction of Dynamics. There is a technique for
reducing dynamics that is associated with the geometry of the semidirect
product reduction theorem. One proceeds as follows:

v We start with a Hamiltonian Ha0
on T*G that depends parametri-

cally on a variable a0 # V*.

v The Hamiltonian, regarded as a map H: T*G_V* � R is assumed
to be invariant on T*G under the action of G on T*G_V*.

v One shows that this condition is equivalent to the invariance of the
function H defined on T*S=T*G_V_V* extended to be constant in the
variable V under the action of the semidirect product.

v By the semidirect product reduction theorem, the dynamics of Ha0

reduced by Ga0
, the isotropy group of a0 , is symplectically equivalent to

Lie�Poisson dynamics on s*=g*_V*.

v This Lie�Poisson dynamics is given by Eq. (2.12) and (2.13) for the
function h(+, a)=H(:g , g&1a) where += g&1:g .

3. LAGRANGIAN SEMIDIRECT PRODUCT THEORY

Despite all the activity in the Hamiltonian theory of semidirect products,
little attention has been paid to the corresponding Lagrangian side.
Now that Lagrangian reduction is maturing (see Marsden and Scheurle
[1993a, b]), it is appropriate to consider the corresponding Lagrangian
question. We shall formulate four versions, depending on the nature of the
actions and invariance properties of the Lagrangian. (Two of them are
relegated to the appendix.)

It should be noted that none of the this below require that the Lagrangian
be nondegenerate. The subsequent theory is entirely based on variational
principles with symmetry and is not dependent on any previous Hamil-
tonian formulation. We shall, however, show that this purely Lagrangian
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formulation is equivalent to the Hamiltonian formulation on duals of semi-
direct products, provided an appropriately defined Legendre transformation
happens to be a diffeomorphism.

The theorems that follow are modelled after the reduction theorem for
the basic Euler�Poincare� equations given earlier. However, as we shall
explain, they are not literally special cases of it. To distinguish the two
types of results, we shall use phrases like basic Euler�Poincare� equations
for the equations (1.57) and simply the Euler�Poincare� equations or the
Euler�Poincare� equations with advection or the Euler�Poincare� equations
with advected parameters, for the equations that follow.

The main difference between the left (right) invariant Lagrangians con-
sidered in the theorem above and the ones we shall work with below is that
L and l depend in addition on another parameter a # V*, where V is a
representation space for the Lie group G and L has an invariance property
relative to both arguments. As we shall see below, the resulting Euler�
Poincare� equations are not the Euler�Poincare� equations for the semidirect
product Lie algebra g �S V* or on g �S V, for that matter.

Upcoming Examples. As we shall see in the examples, the parameter
a # V* acquires dynamical meaning under Lagrangian reduction. For the
heavy top, the parameter is the unit vector in the direction of gravity,
which becomes a dynamical variable in the body representation. For com-
pressible fluids, the parameter is the density of the fluid in the reference
configuration, which becomes a dynamical variable (satisfying the con-
tinuity equation) in the spatial representation.

Left Representation and Left-Invariant Lagrangian. We begin with the
following ingredients:

v There is a left representation of Lie group G on the vector space V
and G acts in the natural way on the left on TG_V*: h(vg , a)=(hvg , ha).

v Assume that the function L: TG_V* � R is left G-invariant.

v In particular, if a0 # V*, define the Lagrangian La0
: TG � R by

La0
(vg)=L(vg , a0). Then La0

is left invariant under the lift to TG of the left
action of Ga0

on G, where Ga0
is the isotropy group of a0 .

v Left G-invariance of L permits us to define l : g_V* � R by

l(g&1vg , g&1a0)=L(vg , a0).

Conversely, this relation defines for any l : g_V* � R a left G-invariant
function L: TG_V* � R.

v For a curve g(t) # G, let

!(t) :=g(t)&1 g* (t)
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and define the curve a(t) as the unique solution of the following linear dif-
ferential equation with time dependent coefficients

a* (t)=&!(t) a(t),

with initial condition a(0)=a0 . The solution can be written as a(t)=
g(t)&1 a0 .

Theorem 3.1. With the preceding notation, the following are equivalent:

(i) With a0 held fixed, Hamilton's variational principle

$ |
t2

t1

La0
(g(t), g* (t)) dt=0 (3.1)

holds, for variations $g(t) of g(t) vanishing at the endpoints.

(ii) g(t) satisfies the Euler�Lagrange equations for La0
on G.

(iii) The constrained variational principle5

$ |
t2

t1

l(!(t), a(t)) dt=0 (3.2)

holds on g_V*, using variations of ! and a of the form

$!='* +[!, '], $a=&'a, (3.3)

where '(t) # g vanishes at the endpoints.

(iv) The Euler�Poincare� equations6 hold on g_V*

d
dt

$l
$!

=ad!*
$l
$!

+
$l
$a

h a. (3.4)

Proof. The equivalence of (i) and (ii) holds for any configuration
manifold and so, in particular, it holds in this case.

Next we show the equivalence of (iii) and (iv). Indeed, using the defini-
tions, integrating by parts, and taking into account that '(t1)='(t2)=0,
we compute the variation of the integral to be
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6 Note that these equations are not the basic Euler�Poincare� equations because we are not
regarding g_V* as a Lie algebra. Rather these equations are thought of as a generalization
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Poincare� equations for these equations.
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$ |
t2

t1

l(!(t), a(t)) dt=|
t2

t1
\� $l

$!
, $!�+�$a,

$l
$a�+ dt

=|
t2

t1
\�$l

$!
, '* +ad! '�&�'a,

$l
$a�+ dt

=|
t2

t1
\�&

d
dt \

$l
$!++ad!*

$l
$!

, '�+� $l
$a

h a, '�+ dt

=|
t2

t1
�&

d
dt \

$l
$!++ad!*

$l
$!

+
$l
$a

h a, '� dt

and so the result follows.
Finally we show that (i) and (iii) are equivalent. First note that the

G-invariance of L: TG_V* � R and the definition of a(t)= g(t)&1a0 imply
that the integrands in (3.1) and (3.2) are equal. However, all variations
$g(t) # TG of g(t) with fixed endpoints induce and are induced by varia-
tions $!(t) # g of !(t) of the form $!='* +[!, '] with '(t) # g vanishing
at the endpoints; the relation between $g(t) and '(t) is given by
'(t)= g(t)&1 $g(t). This is the content of the following lemma proved in
Bloch et al. [1996].7

Lemma 3.2. Let g: U/R2 � G be a smooth map and denote its partial
derivatives by

!(t, =)=TLg(t, =)&1(�g(t, =)��t)

and

'(t, =)=TLg(t, =)&1(�g(t, =)��=).

Then

�!
�=

&
�'
�t

=[!, ']. (3.5)

Conversely, if U is simply connected and !, ': U � g are smooth functions
satisfying (3.5) then there exists a smooth function g: U � G such that
!(t, =)=TL&1

g(t, =)(�g(t, =)��t) and '(t, =)=TL&1
g(t, =)(�g(t, =)��=).

Thus, if (i) holds, we define '(t)= g(t)&1 $g(t) for a variation $g(t) with
fixed endpoints. Then if we let $!= g(t)&1 g* (t), we have by the above
proposition $!='* +[!, ']. In addition, the variation of a(t)= g(t)&1 a0 is

29EULER�POINCARE� AND SEMIDIRECT PRODUCTS

7 This lemma is simple for matrix groups, as in Marsden and Ratiu [1994], but it is less
elementary for general Lie groups.



File: DISTL2 172130 . By:CV . Date:11:06:98 . Time:10:43 LOP8M. V8.B. Page 01:01
Codes: 2546 Signs: 1625 . Length: 45 pic 0 pts, 190 mm

$a(t)=&'(t) a(t). Conversely, if $!='* +[!, '] with '(t) vanishing at the
endpoints, we define $g(t)= g(t) '(t) and the above proposition guarantees
then that this $g(t) is the general variation of g(t) vanishing at the
endpoints. From $a(t)=&'(t) a(t) it follows that the variation of
g(t) a(t)=a0 vanishes, which is consistent with the dependence of La0

only
on g(t), g* (t). K

Cautionary Remarks. Let us explicitly show that these Euler�Poincare�
equations (3.4) are not the Euler�Poincare� equations for the semidirect
product Lie algebra g �S V*. Indeed, by (1.57) the basic Euler�Poincare�
equations

d
dt

$l
$(!, a)

=ad*(!, a)

$l
$(!, a)

, (!, a) # g �S V*

for l : g �S V* � R become

d
dt

$l
$!

=ad!*
$l
$!

+
$l
$a

h a,
d
dt

$l
$a

=&!
$l
$a

,

which is a different system from that given by the Euler�Poincare� equation
(3.4) and a dota=&!a, even though the first equations of both systems are
identical.

The Legendre Transformation. As we explained earlier, one normally
thinks of passing from Euler�Poincare� equations on a Lie algebra g to
Lie�Poisson equations on the dual g* by means of the Legendre transfor-
mation. In our case, we start with a Lagrangian on g_V* and perform a
partial Legendre transformation in the variable ! only, by writing

+=
$l
$!

, h(+, a)=(+, !)&l(!, a). (3.6)

Since

$h
$+

=!+�+,
$!
$+�&� $l

$!
,

$!
!+�=!,

and $h�$a=&$l�$a, we see that (3.4) and a* (t)=&!(t) a(t) imply (2.11)
for the minus Lie�Poisson bracket (that is, the sign + in (2.11)). If this
Legendre transformation Is invertible, then we can also pass from the
minus Lie�Poisson equations (2.11) to the Euler-Poincare� equations (3.4)
together with the equations a* (t)=&!(t) a(t).
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Right Representation and Right Invariant Lagrangian. There are four
versions of the preceding theorem, the given left�left version, a left�right, a
right�left and a right�right version. For us, the most important ones are
the left�left and the right�right versions. We state the remaining two in the
appendix.

Here we make the following assumptions.

v There is a right representation of Lie group G on the vector space
V and G acts in the natural way on the right on TG_V*: (vg , a) h=
(vg h, ah).

v Assume that the function L: TG_V* � R is right G-invariant.

v In particular, if a0 # V*, define the Lagrangian La0
: TG � R by

La0
(vg)=L(vg , a0). Then La0

is right invariant under the lift to TG of the
right action of Ga0

on G, where Ga0
is the isotropy group of a0 .

v Right G-invariance of L permits us to define l : g_V* � R by

l(vg g&1, a0 g&1)=L(vg , a0).

Conversely, this relation defines for any l : g_V* � R a right G-invariant
function L: TG_V* � R.

v For a curve g(t) # G, let !(t) :=g* (t) g(t)&1 and define the curve
a(t) as the unique solution of the linear differential equation with time
dependent coefficients a* (t)=&a(t) !(t) with initial condition a(0)=a0 .
The solution can be written as a(t)=a0 g(t)&1.

Theorem 3.3. The following are equivalent:

(i) Hamilton's variational principle

$ |
t2

t1

La0
(g(t), g* (t)) dt=0 (3.7)

holds, for variations $g(t) of g(t) vanishing at the endpoints.

(ii) g(t) satisfies the Euler�Lagrange equations for La0
on G.

(iii) The constrained variational principle

$ |
t2

t1

l(!(t), a(t)) dt=0 (3.8)

holds on g_V*, using variations of the form

$!='* &[!, '], $a=&a', (3.9)

where '(t) # g vanishes at the endpoints.
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(iv) The Euler�Poincare� equations hold on g_V*

d
dt

$l
$!

=&ad!*
$l
$!

+
$l
$a

h a. (3.10)

The same partial Legendre transformation (3.6) as before maps the
Euler�Poincare� equations (3.10), together with the equations a* =&a! for
a to the plus Lie�Poisson equations (2.16) and (2.17) (that is, one chooses
the overall minus sign in these equations).

Generalizations. The Euler�Poincare� equations are a special case of the
reduced Euler�Lagrange equations (see Marsden and Scheurle [1993b]
and Cendra, Marsden, and Ratiu [1997]). This is shown explicitly in
Cendra, Holm, Marsden, and Ratiu [1997]. There is, however, an easy
generalization that is needed in some of the examples we will consider.
Namely, if L: TG_V*_TQ and if the group G acts in a trivial way on TQ,
then one can carry out the reduction in the same way as above, carrying
along the Euler�Lagrange equations for the factor Q at each step. The
resulting reduced equations then are the Euler�Poincare� equations above
for the g factor, together the Euler�Lagrange equations for the q # Q factor.
The system is coupled through the dependence of L on all variables. (For
a full statement, see Cendra, Holm, Hoyle, and Marsden [1997], who
use this extension to treat the Euler�Poincare� formulation of the
Maxwell�Vlasov equations for plasma physics.)

4. THE KELVIN�NOETHER THEOREM

In this section, we explain a version of the Noether theorem that holds
for solutions of the Euler�Poincare� equations. Our formulation is motivated
and designed for ideal continuum theories (and hence the name Kelvin�
Noether), but it may also of interest for finite dimensional mechanical
systems. Of course it is well-known (going back at least to the pioneering
work of Arnold [1966a]) that the Kelvin circulation theorem for ideal flow
is closely related to the Noether theorem applied to continua using the par-
ticle relabelling symmetry group.

There is a version of the theorem that holds for each of the choices of
conventions, but we shall pick the left�left conventions to illustrate the
result.

The Kelvin�Noether Quantity. We start with a Lagrangian La0
depending

on a parameter a0 # V* as above. We introduce a manifold C on which G
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acts (we assume this is also a left action) and suppose we have an equiv-
ariant map K: C_V* � g**.

As we shall see, in the case of continuum theories, the space C will be
a loop space and (K(c, a), +) for c # C and + # g* will be a circulation.
This class of examples also shows why we do not want to identify the
double dual g** with g.

Define the Kelvin�Noether quantity I: C_g_V* � R by

I(c, !, a)=�K(c, a),
$l
$!

(!, a)�. (4.1)

We are now ready to state the main theorem of this section.

Theorem 4.1 (Kelvin�Noether). Fixing c0 # C, let !(t), a(t) satisfy the
Euler�Poincare� equations and define g(t) to be the solution of g* (t)= g(t) !(t)
and, say, g(0)=e. Let c(t)= g(t)&1 c0 and I(t)=I(c(t), !(t), a(t)). Then

d
dt

I(t)=�K(c(t), a(t)),
$l
$a

h a�. (4.2)

Proof. First of all, write a(t)= g(t)&1 a0 as we did previously and use
equivariance to write I(t) as follows:

�K(c(t), a(t)),
$l
$!

(!(t), a(t))�=�K(c0 , a0), g(t) _ $l
$!

(!(t), a(t))&�.

The g&1 pulls over to the right side as g (and not g&1) because of our
conventions of always using left representations. We now differentiate the
right-hand side of this equation. To do so, we use the following well-known
formula for differentiating the coadjoint action (see Marsden and Ratiu
[1994], page 276):

d
dt

[ g(t) +(t)]= g(t) _&ad*!(t) +(t)+
d
dt

+(t)& ,

where, as usual,

!(t)= g(t)&1 g* (t).

Using this coadjoint action formula and the Euler�Poincare� equations, we
obtain
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d
dt

I=
d
dt �K(c0 , a0), g(t) _ $l

$!
(!(t), a(t))&�

=�K(c0 , a0),
d
dt {g(t) _ $l

$!
(!(t), a(t))&=�

=�K(c0 , a0), g(t) _&ad!*
$l
$!

+ad!*
$l
$!

+
$l
$a

h a&�
=�K(c0 , a0), g(t) _ $l

$a
h a&�

=�g(t)&1 K(c0 , a0), _ $l
$a

h a&�
=�K(c(t), a(t)), _$l

$a
h a&�,

where, in the last steps, we used the definitions of the coadjoint action,
as well as the Euler�Poincare� equation (3.4) and the equivariance of the
map K. K

Corollary 4.2. For the basic Euler�Poincare� equations, the Kelvin quan-
tity I(t), defined the same way as above but with I: C_g � R, is conserved.

For a review of the standard Noether theorem results for energy and
momentum conservation in the context of the general theory, see, e.g.,
Marsden and Ratiu [1994].

5. THE HEAVY TOP

In this section we shall use Theorem 3.1 to derive the classical Euler�
Poisson equations for the heavy top. Our purpose is merely to illustrate the
theorem with a concrete example.

The Heavy Top Lagrangian. The heavy top kinetic energy is given
by the left invariant metric on SO(3) whose value at the identity is
(01 , 02)=I01 } 02 , where 01 , 02 # R3 are thought of as elements of
so(3), the Lie algebra of SO(3), via the isomorphism 0 # R3 [ 0� # so(3),
0� v :=0_v, and where I is the (time independent) moment of inertia ten-
sor in body coordinates, usually taken as a diagonal matrix by choosing
the body coordinate system to be a principal axes body frame. This kinetic
energy is thus left invariant under the full group SO(3). The potential
energy is given by the work done in lifting the weight of the body to the
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height of its center of mass, with the direction of gravity pointing down-
wards. If M denotes the total mass of the top, g the magnitude of the
gravitational acceleration, / the unit vector of the oriented line segment
pointing from the fixed point about which the top rotates (the origin of a
spatial coordinate system) to the center of mass of the body, and l its
length, then the potential energy is given by MglR&1e3 } /, where e3 is
the axis of the spatial coordinate system parallel to the direction of gravity
but pointing upwards. This potential energy breaks the full SO(3) sym-
metry and is invariant only under the rotations S1 about the e3 -axis.

However, for the application of Theorem 3.1 we are supposed to think of
the Lagrangian of the heavy top as a function on TSO(3)_R3 � R. That
is, we need to think of the potential energy as a function of (uR , v) #
TSO(3)_R3. This means that we need to replace the vector giving the
direction of gravity e3 by an arbitrary vector v # R3, so that the potential
equals

U(uR , v)=MglR&1v } /.

Thought of this way, the potential is SO(3)-invariant. Indeed, if R$ # SO(3)
is arbitrary, then

U(R$uR , R$v)=Mgl(R$R)&1 R$v } /

=MglR&1v } /

=U(uR , v)

and the hypotheses of Theorem 3.1 are satisfied. Thus, the heavy top equa-
tions of motion in the body representation are given by the Euler�Poincare�
equations (3.4) for the Lagrangian l : so(3)_R3 � R.

The Reduced Lagrangian. To compute the explicit expression of l,
denote by 0 the angular velocity and by 6=I0 the angular momentum
in the body representation. Let 1=R&1v; if v=e3 , the unit vector pointing
upwards on the vertical spatial axis, then 1 is this unit vector viewed by
an observer moving with the body. The Lagrangian l : so(3)_R3 � R is
thus given by

l(0, 1)=L(R&1uR , R&1v)

= 1
26 } 0&U(R&1uR , R&1v)

= 1
26 } 0&Mgl1 } /.
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The Euler�Poincare� Equations. It is now straightforward to compute
the Euler�Poincare� equations. First note that

$l
$0

=6,
$l
$1

=&Mgl/.

Since

ad*0 6=6_0, v h 1=&1_v,

and

0� 1=&1_0,

the Euler�Poincare� equations are

64 =6_0+Mgl1_/,

which are coupled to the 1 evolution

14 =1_0.

This system of two vector equations comprises the classical Euler�Poisson
equations, which describe the motion of the heavy top in the body
representation.

The Kelvin�Noether Theorem. Let C=g and let K: C_V* � g**$g
be the map (W, 1) [ W. Then the Kelvin�Noether theorem gives the
statement

d
dt

(W, 6) =Mgl(W, 1_/)

where W(t)=R(t)&1 w; in other words, W(t) is the body representation of
a space fixed vector. This statement is easily verified directly. Also, note
that (W, 6) =(w, ?) , with ?=R(t) 6, so the Kelvin�Noether theorem
may be viewed as a statement about the rate of change of the momentum
map of the system (the spatial angular momentum) relative to the full
group of rotations, not just those about the vertical axis.

6. THE EULER�POINCARE� EQUATIONS IN
CONTINUUM MECHANICS

In this section we will apply the Euler�Poincare� equations in the case of
continuum mechanical systems. We let D be a bounded domain in Rn with
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smooth boundary �D (or, more generally, a smooth compact manifold
with boundary and given volume form or density). We let Diff(D) denote
the diffeomorphism group of D of some given Sobolev class. If the domain
D is not compact, then various decay hypotheses at infinity need to be
imposed. Under such conditions, Diff(D) is a smooth infinite dimensional
manifold and a topological group relative to the induced manifold topol-
ogy. Right translation is smooth but left translation and inversion are only
continuous. Thus, Diff(D) is not actually a Lie group and the previous
theory does not apply, strictly speaking. Nevertheless, if one uses right
translations and right representations, the Euler�Poincare� equations of
Theorem 3.3 do make sense, as a simple verification shows. We shall
illustrate below such computations, by verifying several key facts in the
proof.

Let X(D) denote the space of vector fields on D of some fixed differen-
tiability class. Formally, this is the right Lie algebra of Diff(D), that is, its
standard left Lie algebra bracket is minus the usual Lie bracket for vector
fields. To distinguish between these brackets, we shall reserve in what
follows the notation [u, v] for the standard Jacobi�Lie bracket of the
vector fields u, v # X(D) whereas the notation adu v :=&[u, v] denotes the
adjoint action of the left Lie algebra on itself.

We also let X(D)* denote the geometric dual space of X(D), that is,
X(D)* :=01(D)�Den(D), the space of one-form densities on D. If
:�m # 01(D)�Den(D), the pairing of :�m with u # X(D) is given by

(:�m, u) =|
D

: } u m (6.1)

where : } u is the standard contraction of a one-form with a vector field.
For u # X(D) and :�m # X(D)*, the dual of the adjoint representation is
defined by

(ad*u (:�m), v) =&|
D

: } [u, v] m

and its expression is

ad*u (:�m)=(Lu:+(divm u) :)�m=Lu (:�m), (6.2)

where divm u is the divergence of u relative to the measure m, that is,
Lum=(divm u) m. Hence if u=ui ���xi, :=:i dx i, the one-form factor in
the preceding formula for ad*u (:�m) has the coordinate expression

\u j �:i

�x j +:j
�u j

�x i +(divm u) :i+ dxi=\ �
�x j (u j:i)+:j

�u j

�x i+ dxi, (6.3)
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the last equality assuming that the divergence is taken relative to the
standard measure m=d nx in Rn. (On a Riemannian manifold the metric
divergence needs to be used.)

Throughout the rest of the paper we shall use the following conventions
and terminology for the standard quantities in continuum mechanics.
Elements of D representing the material particles of the system are denoted
by X; their coordinates XA, A=1, ..., n may thus be regarded as the particle
labels. A configuration, which we typically denote by ', is an element of
Diff(D). A motion 't is a path in Diff(D). The Lagrangian or material
velocity V(X, t) of the continuum along the motion 't is defined by taking
the time derivative of the motion keeping the particle labels (the reference
particles) X fixed:

V(X, t) :=
d't(X )

dt
:=

�
�t }X 't(X ),

the second equality being a convenient shorthand notation of the time
derivative for fixed X.

Consistent with this definition of velocity, the tangent space to Diff(D)
at ' # Diff(D) is given by

T' Diff(D)=[V' : D � TD | V'(X ) # T'(X ) D].

Elements of T'Diff(D) are usually thought of as vector fields on D cover-
ing '. The tangent lift of right and left translations on T Diff(D) by
. # Diff(D) have the expressions

V'. :=T' R.(V')=V' b . and .V' :=T'L.(V')=T. b V' .

During a motion 't , the particle labeled by X describes a path in D

whose points x(X, t) :='t(X ) are called the Eulerian or spatial points of
this path. The derivative v(x, t) of this path, keeping the Eulerian point x
fixed, is called the Eulerian or spatial velocity of the system:

v(x, t) :=V(X, t) :=
�
�t }x 't(X ).

Thus the Eulerian velocity v is a time dependent vector field on D:
vt # X(D), where vt(x) :=v(x, t). We also have the fundamental relationship

Vt=vt b 't ,

where Vt(X ) :=V(X, t).
The representation space V* of Diff(D) in continuum mechanics is often

some subspace of T(D)�Den(D), the tensor field densities on D and the
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representation is given by pull back. It is thus a right representation of
Diff(D) on T(D)�Den(D). The right action of the Lie algebra X(D) on
V* is given by av :=Lva, the Lie derivative of the tensor field density a
along the vector field v.

The Lagrangian of a continuum mechanical system is a function L:
T Diff(D)_V* � R which is right invariant relative to the tangent lift
of right translation of Diff(D) on itself and pull back on the tensor field
densities.

Thus, the Lagrangian L induces a function l : X(D)_V* � R given by

l(v, a)=L(v b ', '*a),

where v # X(D) and a # V*/T(D)�Den(D), and where '*a denotes the
pull back of a by the diffeomorphism ' and v is the Eulerian velocity. The
evolution of a is given by the equation

a* =&Lva.

The solution of this equation, given the initial condition a0 , is a(t)=
.t V a0 , where the lower star denotes the push forward operation and .t is
the flow of v.

Advected Eulerian quantities are defined in continuum mechanics to be
those variables which are Lie transported by the flow of the Eulerian
velocity field. Using this standard terminology, the above equation states
that the tensor field density a (which may include mass density and other
Eulerian quantities) is advected.

As remarked, V*/T(D)�Den(D). On a general manifold, tensors of a
given type have natural duals. For example, symmetric covariant tensors
are dual to symmetric contravariant tensor densities, the pairing being
given by the integration of the natural contraction of these tensors.
Likewise, k-forms are naturally dual to (n&k)-forms, the pairing being
given by taking the integral of their wedge product.

The operation h between elements of V and V* producing an element
of X(D)* introduced in Section 2 becomes

(v h a, u)=&|
D

v } Lua, (6.4)

where v } Lua denotes the contraction, as described above, of elements of V
and elements of V*. (These operations do not depend on a Riemannian
structure.)

39EULER�POINCARE� AND SEMIDIRECT PRODUCTS



File: DISTL2 172140 . By:CV . Date:11:06:98 . Time:10:43 LOP8M. V8.B. Page 01:01
Codes: 2772 Signs: 1512 . Length: 45 pic 0 pts, 190 mm

For a path 't # Diff(D) let v(x, t) be its Eulerian velocity and consider as
in the hypotheses of Theorem 3.3 the curve a(t) with initial condition a0

given by the equation

a* +Lva=0. (6.5)

Let La0
(V) :=L(V, a0). We can now state Theorem 3.3 in this particular,

but very useful, setting.

Theorem 6.1 (Euler�Poincare� Theorem for Continua). Consider a path
't in Diff(D) with Lagrangian velocity V and Eulerian velocity v. The fol-
lowing are equivalent:

(i) Hamilton's variational principle

$ |
t2

t1

L(X, Vt(X ), a0(X )) dt=0 (6.6)

holds, for variations $'t vanishing at the endpoints.

(ii) 't satisfies the Euler�Lagrange equations for La0
on Diff(D).8

(iii) The constrained variational principle in Eulerian coordinates

$ |
t2

t1

l(v, a) dt=0 (6.7)

holds on X(D)_V*, using variations of the form

$v=
�u
�t

+[v, u], $a=&Lua, (6.8)

where ut=$'t b '&1
t vanishes at the endpoints.

(iv) The Euler�Poincare� equations for continua

�
�t

$l
$v

=&ad*v
$l
$v

+
$l
$a

h a=&Lv
$l
$v

+
$l
$a

h a, (6.9)

hold, where the h operation given by (6.2) needs to be determined on a case
by case basis, depending on the nature of the tensor a. (Remember that $l�$v
is a one-form density.)
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Remarks. 1. Of course, this theorem can be proven directly by imitating
the proof of Theorem 3.1 with appropriate modifications for right represen-
tations and right actions. For those used to the more concrete language of
continuum mechanics as opposed to that of Lie algebras, the following
string of equalities shows that (iii) is equivalent to (iv):

0=$ |
t2

t1

l(v, a) dt=|
t2

t1
\ $l

$v
} $v+

$l
$a

} $a+ dt

=|
t2

t1
_ $l

$v
} \�u

�t
&adv u+&

$l
$a

} Lu a& dt

=|
t2

t1

u } _&
�
�t

$l
$v

&ad*v
$l
$v

+
$l
$a

h a& dt. (6.10)

2. Similarly, one can deduce by hand the form (6.8) of the variations
in the constrained variational principle (6.7) by a direct calculation. This
proceeds as follows. One writes the basic relation between the spatial and
material velocities, namely v(x, t)='* ('&1

t (x), t). One then takes the varia-
tion of this equation with respect to ' and uses the definition u(x, t)=
$'('&1

t (x), t) together with a calculation of its time derivative. Of course,
one can also do this calculation using the inverse map '&1

t instead of ' as
the basic variable, see Holm, Marsden, and Ratiu [1986], Holm [1996a, b].

3. As we mentioned in the context of perfect fluids, the preceding sort
of calculation for $v in fluid mechanics and the interpretation of this
restriction on the form of the variations as the so-called Lin constraints is
due to Bretherton [1970].

4. The coordinate expressions for ($l�$a) h a required to complete
the equations of motion are given in the next section for several choices of
a0(X ) in three dimensions. Namely, we shall discuss the choices corre-
sponding to scalars, one-forms, two-forms, densities in three dimensions,
and symmetric tensors. In the equations of motion, all of these quantities
will be advected.

5. As with the general theory, variations of the action in the advected
tensor quantities contribute to the equations of motion which follow from
Hamilton's principle. At the level of the action l for the Euler�Poincare�
equations, the Legendre transform in the variable v alone is often non-
singular, and when it is, it produces the Hamiltonian formulation of
Eulerian fluid motions with a Lie�Poisson bracket defined on the dual of
the semidirect product algebra of vector fields acting amongst themselves
by Lie bracket and on tensor fields and differential forms by the Lie
derivative. This is a special instance of the more general facts for Lie
algebras that were discussed earlier.
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6. As mentioned earlier, in the absence of the tensor fields a and
when l is the kinetic energy metric, the basic Euler�Poincare� equations are
the geodesic spray equations for geodesic motion on the diffeomorphism
group with respect to that metric. See, e.g., Arnold [1966a], Ovsienko and
Khesin [1987], Zeitlin and Kambe [1993], Zeitlin and Pasmanter [1994],
Ono [1995a, 1995b], and Kouranbaeva [1997] for details in particular
applications of ideal continuum mechanics.

Remarks on the Inverse Map and the Tensor Fields a for Fluids. In the
case of fluids in the Lagrangian picture, the flow of the fluid is a diffeo-
morphism which takes a fluid parcel along a path from its initial position X,
in a ``reference configuration'' to its current position x in the ``container'',
i.e., in the Eulerian domain of flow. As we have described, this forward map
is denoted by ': X [ x. The inverse map '&1: x [ X provides the map
assigning the Lagrangian labels to a given spatial point. Interpreted as
passive scalars, these Lagrangian labels are simply advected with the fluid
flow, X4 =0. In the Lagrangian picture, a tensor density in the reference
configuration a0(X ) (satisfying a* 0(X )=0) consists of invariant tensor func-
tions of the initial reference positions and their differentials. These tensor
functions are parameters of the initial fluid reference configuration (e.g., the
initial density distribution, which is an invariant n-form).

When viewed in the Eulerian picture as

at(x) :=('t*
a0)(x)=(' t*

&1a0)(x),

i.e.,

a0(X ) :=('t*at)(X )=(' t*
&1a0)(X ),

the time invariant tensor density a0(X ) in the reference configuration
acquires advective dynamics in the Eulerian picture, namely

a* 0(X )=\ �
�t

+Lv+ a(x, t)=0,

where Lv denotes Lie derivative with respect to the Eulerian velocity field
v(x, t). This relation results directly from the well known Lie derivative
formula for tensor fields. (See, for example, Abraham, Marsden and Ratiu
[1988].)

Mapping the time invariant quantity a0 (a tensor density function of X )
to the time varying quantity at (a tensor density function of x) as explained
above is a special case of the general way we advect quantities in V* in the
general theory. Specifically, we can view this advection of at as being the
fluid analogue of the advection of the unit vector along the direction of
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gravity (a spatially fixed quantity) by means of the body rotation vector in
the heavy top example.

Consistent with the fact that the heavy top is a left invariant system while
continuum theories are right invariant, the advected tensor density at is a
spatial quantity, while the advected direction of gravity is a body quantity.
If we were to take the inverse map '&1 as the basic group variable, rather
than the map ', then continuum theories would also become left invariant.

The Continuity Equation for the Mass Density. We will need to impose
an additional assumption on our continuum theory. Namely, we assume
that amongst the tensor densities being advected, there is a special one,
namely the mass density. This of course is a tensor density that occurs in
all continuum theories. We denote this density by \d nx and it is advected
according to the standard principles discussed above. Thus, \ satisfies the
usual continuity equation:

�
�t

\+div(\v)=0.

In the Lagrangian picture we have \d nx=\0(X ) d nX, where \0(X ) is the
mass density in the reference configuration. It will also be convenient in the
continuum examples below to define Lagrangian mass coordinates l(X )
satisfying \d nx=d nl with l4 =0. (When using Lagrangian mass coor-
dinates, we shall denote the density \ as D.) We assume that \ (or D) is
strictly positive.

The Kelvin�Noether Circulation Theorem. Let C be the space of con-
tinuous loops #: S1 � D in D and let the group Diff(D) act on C on the left
by (', #) # Diff(D)_C [ '# # C, where '#=' b #.

Next we shall define the circulation map K: C_V* � X(D)**. Given a
one form density : # X* we can form a one form (no longer a density) by
dividing it by the mass density \; we denote the result just by :�\. We let
K then be defined by

(K(#, a), :)=�
#

:
\

. (6.11)

The expression in this definition is called the circulation the one-form :�\
around the loop #.

This map is equivariant in the sense that

(K(' b #, '
*

a), '
*

:)=(K(#, a), :)

for any ' # Diff(D). This is proved using the definitions and the change of
variables formula.
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Given the Lagrangian l : X(D)_V* � R, the Kelvin�Noether quantity is
given by (4.1) which in this case becomes

I(#, v, a)=�
#

1
\

$l
$v

.

With these definitions of K and I, the statement of Theorem 4.1 becomes
the classical Kelvin circulation theorem.

Theorem 6.2 (Kelvin Circulation Theorem). Assume that v(x, t)
satisfies the Euler�Poincare� equations for continua:

�
�t \

$l
$v+=&Lv \ $l

$v++
$l
$a

h a

and a satisfies the advection relation

�a
�t

+Lva=0.

Let 't be the flow of the Eulerian velocity field v, that is, vt=(d't�dt) b '&1
t .

Define #t :='t b #0 and I(t) :=I(#t , vt , at). Then

d
dt

I(t)=�
#t

1
\

$l
$a

h a.

In this statement, we use a subscript t to emphasise that the operations
are done at a particular t and to avoid having to write the other
arguments, as in at(x)=a(x, t); we omit the arguments from the notation
when convenient. Due to the importance of this theorem we shall give here
a separate proof tailored for the case of continuum mechanical systems.

Proof. First we change variables in the expression for I(t):

I(t)=�
#t

1
\t

$l
$v

=�
#0

't* _ 1
\t

$l
$v&=�

#0

1
\0

't* _ $l
$v& .

Next, we use the Lie derivative formula

d
dt

('t*:t)='t* \ �
�t

:t+Lv:t+ ,
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for an arbitrary one-form density :t . This formula gives

d
dt

I(t)=
d
dt �#0

1
\0

't* _ $l
$v&

=�
#0

1
\0

d
dt \'t* _ $l

$v&+
=�

#0

1
\0

't* _ �
�t \

$l
$v++Lv \ $l

$v+& .

By the Euler�Poincare� equations, this becomes

d
dt

I(t)=�
#0

1
\0

't* _ $l
$a

h a&=�
#t

1
\t _

$l
$a

h a& ,

again by the change of variables formula. K

Corollary 6.3 (Kelvin�Noether form). Since the last expression holds
for every loop #t , we may write it as

\ �
�t

+Lv+ 1
\

$l
$v

=
1
\

$l
$a

h a. (6.12)

This is the Kelvin�Noether form of the Euler�Poincare� equations for
ideal continuum dynamics.

7. APPLICATIONS OF THE EULER�POINCARE� THEOREM
TO CONTINUA

Variational Formulae in Three Dimensional Euclidean Coordinates. We
compute explicit formulae for the variations $a in the cases that the set of
tensor fields a consists of elements with the following coordinate functions
in a Euclidean basis on R3,

a # [b, A } dx, B } dS, D d 3x, Sab dxa�dxb]. (7.1)

These are the tensor fields that typically occur in ideal continuum dynamics.
Here, in three dimensional vector notation, we choose B=curl A and
d(A } dx)=B } dS. In Euclidean coordinates on R3, this is d(Ak dxk)=
Ak, j dx j 7 dxk= 1

2=ijkBi dx j 7dxk, where = ijk is the completely antisym-
metric tensor density on R3 with =123=+1. (The two form B } dS=
d(A } dx) is the physically interesting special case of Bkj dx j 7 dxk, in which
Bkj=Ak, j , so that { } B=0.
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We have seen that invariance of the set a in the Lagrangian picture under
the dynamics of v implies in the Eulerian picture that (���t+Lv ) a=0, where
Lv denotes Lie derivative with respect to the velocity vector field v. According
to Theorem 6.1, equation (6.9), the variations of the tensor functions a at fixed
x and t are also given by Lie derivatives, namely $a=&Lua, or

$b=&Lub=&u } {b,

$A } dx=&Lu (A } dx)=&((u } {) A+A j {u j) } dx

=(u_curl A&{(u } A)) } dx,

$B } dS=&Lu (B } dS)=(curl(u_B)) } dS=d($A } dx),

$D d 3x=&Lu (D d 3x)=&{ } (Du) d 3x,

$Sab dxa�dxb=&Lu (Sab dxa �dxb)

=&(ukSab, k+Skb uk
, a+Skauk

, b) dxa�dxb. (7.2)

Hence, Hamilton's principle with this dependence yields

0=$ | dt l(v; b, A, B, D, Sab)

=| dt _ $l
$v

} $v+
$l
$b

$b+
$l
$D

$D+
$l

$A
} $A+

$l
$B

} $B+
$l

$Sab
$Sab&

=| dt _ $l
$v

} \�u
�t

&adv u+&
$l
$b

u } {b&
$l
$D

({ } (Du))

+
$l

$A
} (u_curl A&{(u } A))+

$l
$B

} (curl(u_B))

&
$l

$Sab
(ukSab, k+Skbuk

, a+Skauk
, b)&

=| dt _u } \&
�
�t

�l
�v

&ad*v
$l
$v

&
$l
$b

{b+D{
$l
$D

&
$l

$A
_curl A+A div

$l
$A

+B_curl
$l
$B+

+uk \&
$l

$Sab
Sab, k+\ $l

$Sab
Skb+ , a

+\ $l
$Sab

Ska+ , b+&
=| dt u } _&

�
�t

$l
$v

&ad*v
$l
$v

+
$l
$a

h a&
=| dt u } _&\ �

�t
+Lv+ $l

$v
+

$l
$a

h a& , (7.3)
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where we have consistently dropped boundary terms arising from integra-
tions by parts, by invoking natural boundary conditions. Thus, for the set
of tensor fields a in Eq. (7.1) we have the following Euclidean components
of ($l�$a) h a,

\$l
$a

h a+k
= &

$l
$b

b , k+D \ $l
$D+ , k

+\&
$l

$A
_curl A+A div

$l
$A

+B_curl
$l
$B+k

&
$l

$Sab
Sab, k+\ $l

$Sab
Skb+ , a

+\ $l
$Sab

Ska+ , b
. (7.4)

Stress Tensor Formulation. For example, if we assume a Lagrangian in
the form

l(v; b, A, B, D, Sab)=| d 3x L(v, {v, b, A, B, D, Sab), (7.5)

where L is a given function, then we may use Eq. (7.4) to express the
Euler�Poincare� equations for continua (6.9) in this case in the momentum
conservation form,

�
�t

$l
$v

=&ad*v
$l
$v

+
$l
$a

h a O
�mi

�t
=&

�
�x j T j

i , (7.6)

with momentum density components mi , i=1, 2, 3 defined by

mi #
$l
$vi=

�L

�vi &
�

�xk \ �L

�v i
, k+ , (7.7)

and stress tensor T j
i given by

T j
i =mi v j&

�L

�vk
, j

vk
, i&

�L

�Aj
Ai+

�L

�Bi B j&
�L

�S jb
Sib&

�L

�Saj
Sia

+$ j
i \L&D

�L

�D
&Bk �L

�Bk+ . (7.8)

Here, in the calculation of T j
i , we have used the coordinate expression (6.3)

for ad*u (:�m).

Kelvin�Noether Form. The Euclidean components of the Euler�Poincare�
equations for ideal continua may also be summarized in Kelvin�Noether
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form (6.12) for advected tensor fields a in the set (7.1). We adopt the nota-
tional convention of the circulation map K in Eq. (6.11) that a one form
density can be made into a one form (no longer a density) by dividing it by
the mass density D to produce, e.g., the one form in Euclidean components
(1�D)($l�$vi) dx i from the one form density $l�$v. With a slight abuse of
notation (but in accord with the usual physics conventions) we write the
former coordinate expression as (1�D)($l�$v) } dx. We also denote the Lie-
derivative relation for the continuity equation as (���t+Lv ) D d 3x=0.
Then, the Euclidean components of the Euler�Poincare� equations for con-
tinua in (7.3) are expressed in Kelvin�Noether form (6.12) as

\ �
�t

+Lv+\ 1
D

$l
$v

} dx++
1
D

$l
$b

{b } dx&{ \ $l
$D+ } dx

+
1
D \ $l

$A
_curl A&A div

$l
$A+ } dx&

1
D \B_curl

$l
$B+ } dx

+
1
D \ $l

$Sab
Sab, k&\ $l

$Sab
Skb+ , a

&\ $l
$Sab

Ska+ , b + dxk=0, (7.9)

where the components of the variational derivatives of the Lagrangian l are
to be computed according to the usual physics conventions, i.e., as com-
ponents of Fre� chet derivatives as in Eq. (1.50). In physical applications,
the advected Eulerian tensor fields a in (7.1) represent the buoyancy b (or
specific entropy, for the compressible case), magnetic vector potential A,
magnetic field intensity B, mass density D, and Cauchy�Green strain tensor
Sab , respectively. Formula (7.9) is the Kelvin�Noether form of the equation
of motion for ideal continua in Euclidean coordinates. This Euclidean com-
ponent formula is especially convenient for direct calculations in fluid
dynamics, to which we turn our attention next.

Eulerian Motion Equation for an Ideal Incompressible Fluid. In the
Eulerian velocity representation we consider fluid motion in an n-dimen-
sional domain and define the reduced action Sred and reduced Lagrangian
l(v, D) by

Sred=| dt l=| dt | d nx[ 1
2D |v| 2& p(D&1)]. (7.10)

This action produces the following variations at fixed x and t

1
D

$l
$v

=v,
$l
$D

=
1
2

|v|2& p,
$l
$p

=&(D&1). (7.11)
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Hence, from Eq. (7.9) for Hamilton principles of this type we find the
Eulerian motion equation,

\ �
�t

+Lv+\ 1
D

$l
$v

} dv+&{ \ $l
$D+ } dx=0, or

(7.12)
�v
�t

+(v } {) v+{p=0,

for ``natural'' boundary conditions, n̂ } v=0 on the boundary, where n̂ is the
boundary's outward unit normal vector. This is the Eulerian motion equa-
tion for an incompressible fluid in n dimensions. The constraint D=1
(volume or mass preservation) is imposed by varying the Lagrange multi-
plier p, the pressure. Incompressibility then follows from substituting D=1
into the Lie-derivative relation for D, which closes the ideal incompressible
fluid system,

\ �
�t

+Lv+ Dd 3=0, i.e.,
�D
�t

=&{ } (Dv). (7.13)

This relation, together with the constraint D=1 gives incompressibility of
the flow, { } v=0.

Remark on Lagrangian Mass Coordinates. An alternative way to treat
Hamilton's principle for the action (7.10) is to perform variations at fixed
x and t of the inverse maps x [ l, described by the Lagrangian mass coor-
dinate functions lA(x, t), A=1, 2, ..., n, which determine v and D by the
formulae (in which one sums on repeated indices)

AlA

�t
=&viDA

i , DA
i =

�lA

�xi , D=det(DA
i ). (7.14)

As discussed above, the relation of mass coordinates l to the usual
Lagrangian coordinates X is given by a change of variables in the fluid
reference configuration to make \0(X ) d nX=d nl. Variation of an action of
the form Sred(v, D) with respect to lA with p imposing volume preservation
then yields (Holm, Marsden, and Ratiu [1986], Holm [1996a]),

$Sred=| dt | d nx {D(D&1) i
A $lA _ d

dt
1
D

$l
$vi+

1
D

$l
$v j v j

, i&\ $l
$D+ , i&

&$p(D&1)= , (7.15)
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where d�dt=���t+(v } {) is the material derivative of Eulerian quantities
and we again invoke natural boundary conditions when integrating by
parts.

Hence, the vanishing of the coefficient of $lA in the variational formula
(7.15) recovers the Euler�Poincare� equation (7.12) for the Eulerian fluid
velocity, v, by stationarity of the action (7.10) with respect to variations
of the Lagrangian mass coordinates lA(x, t). Similar arguments based on
stationary variations of the action with respect to the Lagrangian mass coor-
dinates lA at fixed x, t will also recover the more general Euler�Poincare�
equations (7.9) from actions which depend on the velocity v and the advected
quantities in Eq. (7.1) through their dependence on the lA(x, t).

Adiabatic Compressible MHD. In the case of adiabatic compressible
magnetohydrodynamics (MHD), the action in Hamilton's principle is
given by

Sred=| dt l=| dt d 3x \D
2

|v|2&De(D, b)&
1
2

|B| 2+ , (7.16)

where e(D, b) is the fluid's specific internal energy, whose dependence on
the density D and specific entropy b is given as the ``equation of state'' and
which for an isotropic medium satisfies the thermodynamic first law in the
form de=&pd(1�D)+Tdb with pressure p(D, b) and temperature T(D, b).
The variation of l in (7.16) is

$Sred=| dt d 3x Dv } $v&DT $b+( 1
2 |v|2&h) $D&B } $B. (7.17)

The quantity h=e+ p�D denotes the specific enthalpy, which thus satisfies
dh=(1�D) dp+Tdb. The Euler�Poincare� formula in the Kelvin�Noether
form (7.9) yields the MHD motion equation as

\ �
�t

+Lv+ (v } dx)&T db+
1
D

B_curl B } dx&d \1
2

|v|2&h+=0, (7.18)

or, in three dimensional vector form,

�v
�t

+(v } {) v+
1
D

{p+
1
D

B_curl B=0. (7.19)

By definition, the advected variables [b, B, D] satisfy the following Lie-
derivative relations which close the ideal MHD system,
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\ �
�t

+Lv+ b=0, or
�b
�t

=&v } {b,

\ �
�t

+Lv+ B } dS=0, or
�B
�t

=curl(v_B), (7.20)

\ �
�t

+Lv+ D d 3x=0, or
�D
�t

=&{ } (Dv),

and the function p(D, b)=D2 �e��D is specified by giving the equation of
state of the fluid, e=e(D, b). If the condition { } B=0 holds initially, then
it holds for all time; since this constraint is preserved by the dynamical
equation for B.

Adiabatic Magneto-Elastodynamics. When nonlinear elasticity is also a
factor in the MHD evolution, there is an additional Lie-derivative relation,

\ �
�t

+Lv+ (Sab dxa�dxb)=0, (7.21)

leading to the dynamical equation for the advected Cauchy�Green strain
tensor Sab (which measures nonlinear strain in spatial coordinates),

�
�t

Sab=&(vkSab, k+Skb vk
, a+Skavk

, b). (7.22)

In this case, additional stress terms appear in the motion equation for v
that arise from the dependence of the specific internal energy e(D, b, Sab)
on the Cauchy�Green strain tensor Sab in the MHD action (7.16) when the
elasticity of the medium is involved. The stress tensor per unit mass _ab is
determined from the equation of state of such an magneto-elastic medium
by the Doyle�Erickson formula _ab#�e��Sab . The Euler�Poincare� equa-
tion (7.9) for ideal magneto-elasticity is then seen to be

�vi

�t
+v jv i, j+

1
D

p , i+
1
D

B j (Bj, i&Bi, j)&(_abSib) , a&(_abSia) , b=0, (7.23)

where we have used the specific enthalpy relation for an elastic medium,
dh&T db=D&1 dp+_ab dSab . Thus, adiabatic magneto-elastodynamics
summons all of the advected quantities in Eq. (7.1) and makes use of the
entire Euler�Poincare� equation (7.9).

Adiabatic Compressible Maxwell Fluid Dynamics via the Kaluza�Klein
Construction. An adiabatic Maxwell fluid (MF) with (nonrelativistic)
Eulerian fluid velocity v, density D, specific entropy b and pressure p(D, b)
satisfies the following system of equations,
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�v
�t

+(v } {) v+
1
D

{p(D, b)=
q
m

(E+v_B),

�D
�t

=&{ } (Dv),
�b
�t

=&(v } {) b,

(7.24)

{ } E=
q
m

D,
�E
�t

=&
q
m

Dv+{_B,

{ } B=0,
�B
�t

=&{_E.

This system consists of the motion equation for a charged fluid moving
under the combined effects of pressure gradient and Lorentz forces; the
continuity equation for the mass density D; advection of the specific
entropy, b; and Maxwell's equations for the electromagnetic fields E and B
in the moving fluid medium, whose polarizability and magnetization are
neglected for simplicity. (For the physically more realistic treatment of
moving media with electromagnetic induction in a similar framework,
including relativistic effects, see Holm [1987].) The equations for D and b
are the familiar advection laws. The coupling constant q�m is the charge-to-
mass ratio of the fluid particles, and the electric and magnetic fields E and
B are defined in terms of the scalar and vector potentials 8 and A by

E# &
�A
�t

{8, B#{_A. (7.25)

In the MF equations (7.24), charged fluid motion is the source for the
electromagnetic fields which act self-consistently upon the fluid through the
Lorentz force. We shall show that Eq. (7.24) are Euler�Poincare� equations
for the gauge invariant action of ``Kaluza�Klein'' form given by

Sred=| dt l=| dt d 3x \1
2

D |v|2+
1
2

D(A } v&8+|~ )2&De(D, b)

+
1
2 }

�A
�t

+{8 }
2

&
1
2

|{_A|2+ , (7.26)

where |~ =�%��t+v } {% for a gauge field % and e(D, b) is the fluid's specific
internal energy, which satisfies the first law of thermodynamics in the form
de=&pd(1�D)+T db with pressure p(D, b) and temperature T(D, b).

This action principle fits into the general theory with the electromagnetic
field variables playing the role of additional configuration variables which
are not acted on by the particle relabelling group. They obey the usual
Euler�Lagrange equations, coupled to the Euler�Poincare� variables through
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the Lagrangian. In other words, the primitive unreduced Lagrangian in this
case is of the abstract form L: TG_V*_TQ_TC � R in which G, the
fluid particle relabelling group, acts trivially on the Maxwell field variables
Q and the gauge field % # C. Note that the Lagrangian in equation (7.26)
is invariant under translations of %, as well as under the electromagnetic
gauge transformations,

A � A+{`, 8 � 8&�`��t, % � %&`, (7.27)

for an arbitary function ` of x and t.
We now take variations of the action. The variation of Sred in Eq. (7.26)

may be written using the definitions of E and B, and the abbreviated notation
c#A } v&8+|~ , as

$Sred=| dt d 3x _D(v+cA+c {%) } $b+\1
2

|v|2+
1
2

c2&e&
p
D+ $D

&DT $b+\c Dv+
�E
�t

&{_B+ } $A+(&cD+{ } E) $8

&\�c D
�t

+{ } c Dv+ $%& , (7.28)

where terms arising from integration by parts vanish for the natural bound-
ary conditions given by

v } n̂=0, E } n̂=0, and n̂_B=0 on the boundary, (7.29)

and for variations $g(t) of g(t) vanishing at the endpoints. Stationarity of
the action Sred in (7.26) under variation of the gauge field % gives the
conservation law,

\ �
�t

+v } {+ c=0 via the continuity equation,

(7.30)
�D
�t

+{ } (Dv)=0,

Hence, we may set c=q�m in equation (7.28) and then acquire the two
Maxwell equations with sources from stationarity of the action Sred under
variations of A and 8. Once the flow velocity v is known, the relation
c=q�m determines the gauge function % by ``quadrature,'' from the defini-
tions of c and |~ as

|~ #
�%
�t

+v } {%=
q
m

+8&A } v. (7.31)

53EULER�POINCARE� AND SEMIDIRECT PRODUCTS



File: DISTL2 172154 . By:CV . Date:11:06:98 . Time:10:43 LOP8M. V8.B. Page 01:01
Codes: 2471 Signs: 1159 . Length: 45 pic 0 pts, 190 mm

The remaining variations of Sred in [v, D, b] for the Euler�Poincare�
dynamics collect into the Kelvin�Noether form of Eq. (7.9) as

\ �
�t

+v } {+\ 1
D

$l
$v++

1
D

$l
$v j {v j+

1
D

$l
$b

{b&{
$l
$D

=0. (7.32)

Specifically, we have

\ �
�t

+v } {+ (v+cA+c {%)+(vj+cAj+c% , j) {v j

&T {b&{ \1
2

|v|2+
1
2

c2&e&
p
D+=0. (7.33)

Using the fundamental vector identity of fluid dynamics in three dimensions,

(b } {) a+aj {b j=&b_({_a)+{(a } b), (7.34)

with, in this case, b=v and a=D&1 $l�$v, casts the Euler�Poincare� equation
(7.32) into its equivalent ``curl'' form,

�
�t \

1
D

$l
$v+&v_{_\ 1

D
$l
$v++

1
D

$l
$b

{b+{ \v }
1
D

$l
$v

&
$l
$D+=0. (7.35)

Similarly, applying the same vector identity with b=v and a=c(A+{%) in
the Maxwell fluid motion equation (7.33) yields,

�v
�t

+(v } {) v+
1
D

{p=c \&
�A
�t

&{8+v_({_A)+
=

q
m

(E+v_B), (7.36)

where we have used the thermodynamic first law. Thus we find the
Maxwell fluid motion law��the first among the equations in (7.24)��after
setting c=q�m and using the definitions of the electromagnetic fields E and
B in terms of the potentials A and 8.

Theorem 7.1 (Kelvin Circulation Theorem for the Maxwell Fluid). By
the MF motion equation (7.36) and the thermodynamic first law, we have

dI
dt

=�
#t

T db, (7.37)
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where the circulation integral is given by

I#�
#t
\v+

q
m

A+ } dx,

for a curve #t which moves with the fluid velocity v.

Proof. The proof is the same as for Theorem 6.2; although it is also
immediately seen from the motion equation (7.33) after substituting
D&1 $l�$v=v+c(A+{%) and D&1 $l�$b=&T. K

Corollary 7.2 (Potential Vorticity Convection for the Maxwell-Fluid).
Stokes' theorem, advection of specific entropy b and the continuity equation
together imply convection of potential vorticity for the adiabatic Maxwell
fluid,

�q
�t

+v } {q#
dq
dt

=0 with q#
1
D

{b } curl \v+
q
m

A+ . (7.38)

Remark. The equation dq�dt=0 for convection of potential vorticity for
a general Lagrangian with dependence l(v, b, D), with

q=
1
D

{b } curl \ 1
D

$l
$v+ , (7.39)

may also be proven directly from the ``curl'' form of the Kelvin�Noether
Eq. (7.35) in three dimensions, by taking the scalar product of its curl with
{b and applying the continuity equation for D.

Alternative Interpretations of the Maxwell Fluid Formulation. Note that
the first line of the Euler�Poincare� motion equation (7.36) for Maxwell
fluids persists, when the electromagnetic energy terms are dropped from the
MF Lagrangian in Eq. (7.26), to give the action

Sred =| dt l

=| dt d 3x( 1
2D |v| 2+ 1

2D(A } v&8+|~ )2&De(D, b)). (7.40)

The Euler�Poincare� equation which results from this action is

�v
�t

+(v } {) v+
1
D

{p=c \&
�A
�t

&{8+v_({_A)+ . (7.41)
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The Kelvin Theorem 7.1 and its potential vorticity Corollary 7.2 also persist
for the dynamics derived from this truncated action. The ``Lorentz force''
terms in Eq. (7.41) in terms of A and 8 arise purely from the Kaluza�Klein
coupling term��the second term in the integrand of the action Sred in
Eq. (7.40). These ``Lorentz forces'' may be interpreted physically as non-
inertial forces resulting from having moved into a frame of reference with
a prescribed velocity given by A(x, t). The velocity v then represents fluid
flow relative to this noninertial frame. This situation reduces to Faraday
driving of the fluid (Faraday [1831]), when A(x, t) corresponds to a rigid
motion of the fluid container. For a simple example, set c= f0 ; {8=0;
and A= 1

2 ẑ_x. Then cv_({_A)=v_f0 ẑ gives the Coriolis force and v
corresponds to fluid velocity in a uniformly rotating reference frame with
constant angular velocity f0 . This is the typical situation in geophysical
fluid dynamics.

Alternatively, the right-hand side of Eq. (7.41) may be interpreted as a
vortex force arising from a given wave field at the surface of an incom-
pressible fluid (for D=1), as in Craik and Leibovich [1976] (see also
Holm [1996b]). The Craik�Leibovich equations are formally identical to
Eq. (7.41) when A is identified as the prescribed mean Stokes drift velocity
due to the presence of the wave field.

Fluid motion equations of the same form as (7.41) also appear in the
generalized Lagrangian-mean (GLM) formulation of wave, mean-flow
interaction theories (see Andrews and McIntyre [1978a, b]), in which |~
is the Doppler-shifted frequency of a wave packet interacting with a
Lagrangian-mean flow of velocity v, and A is the prescribed pseudomomentum
per unit mass of the wave. For a discussion of self-consistent Lie�Poisson
Hamiltonian theories of wave, mean-flow interaction in a similar form, see
Gjaja and Holm [1996].

Geodesic Motion and the Kaluza�Klein Construction for Incompressible
Fluids. Hamilton's principle for the action in the ``minimal coupling'' form

S$=| dt l=| dt d 3x \1
2

D |v|2+
q
m

DA } v&
q
m

D8&De(D, b)+ , (7.42)

yields the same Euler�Poincare� equation (7.41) as results from Hamilton's
principle for the Kaluza�Klein action in Eq. (7.40). Thus, we see that by
introducing the auxiliary gauge field, %, the Kaluza�Klein construction ren-
ders the minimal coupling form of the action for fluid dynamics quadratic
in the velocity, while preserving its corresponding Euler�Poincare� equation.
The Kaluza�Klein construction for charged particle mechanics is discussed
in Marsden and Ratiu [1994]. The historical references are Kaluza
[1921], Klein [1926] and Thirry [1948].

56 HOLM, MARSDEN, AND RATIU



File: DISTL2 172157 . By:CV . Date:11:06:98 . Time:10:43 LOP8M. V8.B. Page 01:01
Codes: 2954 Signs: 2319 . Length: 45 pic 0 pts, 190 mm

In the incompressible case, when the Kaluza�Klein action is taken to be

Sred=| dt l=| dt d 3x( 1
2D |v|2+ 1

2 D(A } v&8+|~ )2& p(D&1)), (7.43)

for arbitrary prescribed functions A and 8, the resulting Euler�Poincare�
equation (i.e., Eq. (7.41) with D=1) represents geodesic motion on the
group of volume-preserving diffeomorphisms with respect to the conserved
kinetic-energy metric given by

&v&2=| d 3x( 1
2 |v|2+ 1

2 (A } v&8+|~ )2), (7.44)

where c#A } v&8+|~ is an advected quantity, dc�dt=0. This observation
extends the geodesic property of incompressible ideal fluid flows established
in Arnold [1966a] to the case of incompressible Maxwell fluid flows, as
well as to the case of incompressible ideal fluid flows in an arbitrarily moving
reference frame. From the Euler�Poincare� point of view, this extension
enlarges the particle relabelling group G from the group of diffeomorphisms
to the group of automorphisms of the single particle Kaluza�Klein bundle.
The total system for the incompressible Maxwell fluid flows is then geodesic
motion on the product of this automorphism group with the Maxwell fields
themselves. We believe that a similar extension may be involved in the
results of Ono [1995a, 1995b].

We should also remark that when one has equations in geodesic form,
one can make use of all the attendant geometry to obtain additional inter-
esting results. Examples of this applied to questions of stability and con-
jugate points are given in the works of Misiolek listed in the references.

8. APPROXIMATE MODEL FLUID EQUATIONS WHICH
PRESERVE THE EULER�POINCARE� STRUCTURE

The preceding section demonstrates the applicability of the Euler�
Poincare� theorem for ideal continua when the equations of motion are
given. Here we discuss approximate fluid models which preserve the Euler�
Poincare� structure, and are obtained by making asymptotic expansions and
other approximations in Hamilton's principle for a given set of model
equations. As examples, in this section we first discuss the derivation of the
quasi-geostrophic approximation in geophysical fluid dynamics from an
approximation of Hamilton's principle for the rotating shallow water equa-
tions. Next, we discuss the Boussinesq approximation for dispersive water
waves in one dimension. As an example of the type of ``bonus'' which may
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appear in making simplifying approximations while preserving mathe-
matical structure, we derive the integrable Camassa�Holm equation
(Camassa and Holm [1993], Camassa, Holm and Hyman [1994], Alber
et al. [1994, 1995, 1997]), by making asymptotic approximations in the
Hamilton's principle for the Boussinesq equations. The Camassa�Holm
equation in one dimension is a completely integrable partial differen-
tial equation for dispersive water waves that was actually discovered by
making structure preserving approximations of this type. This equation
turns out to describe geodesic motion on the group of diffeomorphisms of
either the real line or the periodic interval, with metric given by the H1

norm of the velocity. We also derive a multidimensional analogue of the
one-dimensional Camassa�Holm equation by invoking the n-dimensional
version of this geodesic property. There are also other potential advantages
of making structure preserving approximations, e.g., for numerical integra-
tions. However, discussion of these other advantages is deferred to another
place. (See Marsden and Wendlandt [1997], Wendlandt and Marsden
[1997], and Marsden, Patrick, and Shkoller [1997] for recent advances in
this direction.)

Rotating Shallow Water Dynamics as Euler�Poincare� Equations. We
first consider dynamics of rotating shallow water (RSW) in a two-dimen-
sional domain with horizontal coordinates x=(x1 , x2). RSW motion is
governed by the following nondimensional equations for horizontal fluid
velocity v=(v1 , v2) and depth D,

=
d
dt

v+ f ẑ_v+{�=0,
�D
�t

+{ } Dv=0, (8.1)

with notation

d
dt

#\ �
�t

+v } {+ and �#\D&B
=F + . (8.2)

These equations include variable Coriolis parameter f =f (x) and bottom
topography B=B(x).

The dimensionless scale factors appearing in the RSW equations (8.1)
and (8.2) are the Rossby number = and the rotational Froude number F,
given in terms of typical dimensional scales by

==
V0

f0 L
<<1 and F=

f 2
0L2

gB0

=O(1). (8.3)
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The dimensional scales (B0 , L, V0 , f0 , g) denote equilibrium fluid depth,
horizontal length scale, horizontal fluid velocity, reference Coriolis param-
eter, and gravitational acceleration, respectively. Dimensionless quantities
in Eq. (8.1) are unadorned and are related to their dimensional counter-
parts (primed), according to

v=V0v, x$=Lx, t$=\ L
V0+ t, f $= f0 f,

(8.4)

B$=B0B, D$=B0D, and D$&B$=B0(D&B).

Here, dimensional quantities are: v$, the horizontal fluid velocity; D$, the
fluid depth; B$, the equilibrium depth; and D$&B$, the free surface elevation.

For barotropic horizontal motions at length scales L in the ocean, say,
for which F is order O(1)��as we shall assume��the Rossby number = is
typically quite small (=<<1) as indicated in Eq. (8.3). Thus, =<<1 is a
natural parameter for making asymptotic expansions. For example, we
shall assume |{f |=O(=) and |{B|=O(=), so we may write f =1+=f1(x)
and B=1+=B1(x). In this scaling, the leading order implications of equa-
tion (8.1) are v=ẑ_{� and { } v=0. This is geostrophic balance.

A simple calculation using Eq. (7.12) shows that the RSW equations
(8.1) arise as Euler�Poincare� equations from Hamilton's principle with
action SRSW ,

SRSW =| dt lRSW

=| dt | dx1 dx2 _Dv } R(x)&
(D&B)2

2=F
+

=
2

D |v|2& , (8.5)

where curl R(x)#f (x) ẑ yields the prescribed Coriolis parameter. The
RSW equations (8.1) themselves can be regarded as being derived from
asymptotics in Hamilton's principle for three dimensional incompressible
fluid motion, see Holm [1996a]. However, this viewpoint is not pursued
further here, as we proceed to describe the relation of RSW to the
quasigeostrophic approximation of geophysical fluid dynamics.

Quasi-geostrophy. The quasi-geostrophic (QG) approximation is a use-
ful model in the analysis of geophysical and astrophysical fluid dynamics,
see, e.g., Pedlosky [1987]. Physically, QG theory applies when the motion
is nearly in geostrophic balance, i.e., when pressure gradients nearly
balance the Coriolis force in a rotating frame of reference, as occurs in
meso- and large-scale oceanic and atmospheric flows on Earth. Mathemati-
cally, the simplest case is for a constant density fluid in a planar domain
with Euclidean coordinates x=(x1 , x2). QG dynamics for this case is
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expressed by the following nondimensional evolution equation for the stream-
function � of the incompressible geostrophic fluid velocity v=ẑ_{�,

�({�&F�)
�t

+[�, 2�]+;
��
�x1

=0. (8.6)

Here 2 is the Laplacian operator in the plane, F denotes rotational
Froude number, [a, b]#�(a, b)��(x1 , x2) is the Jacobi bracket (Jacobian)
for functions a and b defined on R2 and ; is the gradient of the Coriolis
parameter, f, taken as f =1+;x2 in the ;-plane approximation, with con-
stant ;. (Neglecting ; gives the f-plane approximation of QG dynamics.)
The QG equation (8.6) may be derived from an asymptotic expansion of
the RSW equations (8.1) by truncating at first order in the Rossby number,
cf. Pedlosky [1987]. Equation (8.6) may be written equivalently in terms
of the potential vorticity, q, as in Eq. (7.38),

�q
�t

+v } {q=0, where q#2�&F�+ f for QG. (8.7)

This form of QG dynamics expresses its basic property of potential vor-
ticity conservation on geostrophic fluid parcels.

The QG approximation to the RSW equations introduces ``quasi-
geostrophic particles'' which move with geostrophic velocity v=ẑ_{�
and, thus, trace the geostrophic component of the RSW fluid flow. These
QG fluid trajectories are described as functions of Lagrangian mass coor-
dinates l=(l1 , l2) given by x(l, t) in the domain of flow.

Hamilton's Principle Derivation of QG as Euler�Poincare� equations. As
in Holm and Zeitlin [1997], we consider the following action for QG
written in the Eulerian velocity representation with the integral operator
(1&F2&1),

Sred =| dt l

=| dt | dx1 dx2 _=
2

Dv } (1&F2&1) v+Dv } R(x)&�(D&1)& . (8.8)

This choice can be found as an asymptotic approximation of the RSW
action SRSW in Eq. (8.5), in the limit of small wave amplitudes of order
O(=2) and constant mean depth to the same order, when the wave elevation
is determined from the fluid velocity by inverting the geostrophic relation,
v=ẑ_{�. The variational derivatives of the reduced Lagrangian Sred at
fixed x and t are
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1
D

$l
$v

=R+= _v&
F

2
2&1v&

F

2D
2&1(Dv)& ,

$l
$D

=
=
2

v } (1&F2&1) v+v } R&�, (8.9)

$l
$�

=&(D&1),

where we have used the symmetry of the Laplacian operator and assumed
no contribution arises from the boundary when integrating by parts. For
example, we may take the domain to be periodic. Hence, the Euler�
Poincare� equation (7.12) for action principles of this type and the funda-
mental vector identity (7.34) combine to give the Eulerian QG ``motion
equation,''

=
�
�t

(1&F2&1) v&v_curl(=(1&F2&1) v+R)

+{ \�+
=
2

v } (1&F2&1) v+=0, (8.10)

upon substituting the constraint D=1, imposed by varying �. The curl of
this equation yields

�q
�t

+v } {q+q{ } v=0, (8.11)

where the potential vorticity q is given by

q== ẑ } curl(1&F2&1) v+ f==(2�&F�)+ f, (8.12)

with

f#ẑ } curl R=1+;x2 , (8.13)

and ; is assumed to be of order O(=). The constraint D=1 implies { } v=0
(from the kinematic relation �D��t+{ } Dv=0) and when v=ẑ_{� is
substituted, the equation for q=2�&F�+ f yields the QG potential
vorticity convection equation (8.7). Thus, the QG approximation follows
as the Euler�Poincare� equation for an asymptotic expansion of the action
for the RSW equations when the potential energy is modelled by inverting
the geostrophic relation. The same QG equation follows upon recasting the
action (8.8) in the Kaluza�Klein form (7.43) for incompressible fluids,
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Sred =| dt l

=| dt dx1 dx2 _=
2

Dv } (1&F2&1) v+
1
2

D(R } v+|~ )2&�(D&1)& ,

(8.14)

where |~ is defined as |~ =d%�dt=�%��t+v } {% for the gauge field %, as in
the case of the Maxwell fluid. Thus, the QG motion equation (8.10) with
the beta-effect (included in R) describes geodesic motion on the group of
area-preserving diffeomorphisms with respect to the conserved kinetic-
energy metric given by

&v&2=| dx1 dx2 _ =
2

v } (1&F2&1) v+
1
2

(R } v+|~ )2& , (8.15)

where c$#R } v+|~ is an advected quantity, dc$�dt=0. This observation
from the Euler�Poincare� viewpoint confirms the geodesic interpretation of
the QG equations for motion in the ;-plane established in Zeitlin and
Pasmanter [1994].

1D Boussinesq Dispersive Shallow Water Equations. For one dimen-
sional shallow water motion with prescribed mean depth B(x) we choose
the following action

Sred=| dt l=| dt dx _1
2

Dv2+
:2

2
(Dv)2

x&
g
2

(D&B(x))2& , (8.16)

in which g and :2 are constants and subscript x denotes partial derivative.
The second term, proportional to :2, represents the kinetic energy due to
vertical motion. The last term is the potential energy. Recall that the
surface elevation h#D&B(x) satisfies �h��t=&(Dv)x for shallow water
dynamics in one dimension. Thus, the last two terms are analogous to the
Lagrangian

:2

2 \�h
�t+

2

&
g
2

h2.

This is the Lagrangian for a harmonic oscillator whose displacement is
given by the surface elevation h and whose natural frequency is - g�:. For
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the choice of action in equation (8.16) and for boundary conditions such
that vx � 0 as |x| � �, the variation is

$Sred=| dt dx _D(v&:2(Dv)xx) $v+\v2

2
&:2v(Dv)xx& gh+ $D& .

(8.17)

The Kelvin�Noether form of the Euler�Poincare� equations in (7.12) then
gives

0=\ �
�t

+Lv+\ 1
D

$l
$v

dx+&d \ $l
$D+

=_ �
�t

(v&:2(Dv)xx)+vvx+ ghx& dx. (8.18)

Upon inserting the one-dimensional continuity equation into the :2 term
and rearranging slightly, we find the system of equations

�v
�t

+vvx+ ghx+:2 �2hx

�t2 =0,
�h
�t

+(hv+B(x) v)x=0, (8.19)

the second of which is just a restatement of continuity. According to
Whitham [1974] these equations were favored by Boussinesq, who first
formulated them by using the method of asymptotic expansions. Here we
see that the Boussinesq shallow water equations (8.19) are also Euler�
Poincare� equations on Diff(R) derived from the action (8.16). The term
proportional to :2 in Eq. (8.19) arises from the kinetic energy due to verti-
cal motion in the action (8.16) and produces the wave dispersion respon-
sible for solitary wave solutions of these equations.

1D Camassa�Holm Equation for Peakons. In the limit that the potential
energy gh2�2 is negligible compared to the kinetic energy (e.g., for weak
gravity, or small surface elevation), we may ignore the last term in the
action (8.16) for the Boussinesq equations in one dimension, set D=B(x)
in the other terms and rescale to :2=1, conforming to the notation in
Camassa and Holm [1993]. We thereby obtain the following simplified
expression for the shallow water action in this regime,

Sred=| dt dx B(x) ( 1
2v2+ 1

2v2
x). (8.20)
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For this action, when we also assume B(x)=1 (for constant bottom
topography) Hamilton's principle implies simply

0=$Sred=| dt l=| dt dx(v&vxx) $v, (8.21)

for vanishing boundary conditions for vx on the real line as |x| � �.
Hence, $l�$v=v&vxx and the basic Euler�Poincare� equations for this case
reduce to

�
�t

(v&vxx)=&adv*(v&vxx)=&v(v&vxx)x&2(v&vxx) vx . (8.22)

This is the }=0 case of the completely integrable partial differential equa-
tion derived by Camassa and Holm [1993],

�
�t

(v&vxx)+2}vx=&3vvx+2vxvxx+vvxxx . (8.23)

For }=0, this equation admits ``peakon'' solutions. The peakons are
solitons which interact elastically and possess a peak, at which the
derivative vx reverses sign. The simplest case is the single peakon, which is
a solitary travelling wave solution given by v(x, t)=c0 exp &|x&c0 t|,
with a constant wave speed c0 . The multipeakon solutions of the
Camassa�Holm equation are obtainable from its associated Lax pair and
linear isospectral problem, as shown in Camassa and Holm [1993].

Being basic Euler�Poincare� , Eq. (8.22) describes geodesic motion.
Camassa and Holm [1993] note that the integrable dynamics of N
peakons interacting nonlinearly via Eq. (8.22) reduces to finite dimensional
geodesic motion on a manifold with N corners. This geodesic property per-
sists to infinite dimensions and although the equation was originally
intended to be an approximation of shallow water motion, it turns out
Eq. (8.22) is also the geodesic spray equation for motion on the group of
diffeomorphisms of the real line with metric given by the H1 norm of v, see
Kouranbaeva [1997]. The }{0 case of the Camassa�Holm equation
(8.23) may be obtained formally by shifting (v&vxx) by } in Eq. (8.22) and
retaining homogeneous boundary conditions for (v&vxx) as |x| � �. The
corresponding statement about geodesic motion for }{0, however, is
rather more technical than for }=0 and involves the Gel'fand�Fuchs
cocycle and the Bott�Virasoro group, see Misiolek [1997] for details. See
Alber et al. [1994, 1995, 1997] for discussions of the periodic solutions of
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the Camassa�Holm equation and a related integrable shallow water equa-
tion in the Dym hierarchy,

2}vx=
�
�t

vxx+2vxvxx+vvxxx . (8.24)

This equation is the ``high wave number limit'' of the Camassa�Holm equa-
tion (8.23).

Higher-Dimensional Camassa�Holm Equation. As we have seen, the
Camassa�Holm (CH) equation in one dimension describes geodesic
motion on the diffeomorphism group with respect to the metric given by
the H1 norm of the Eulerian fluid velocity. Thus, a candidate for its
n-dimensional incompressible generalization should be the Euler�Poincare�
equation that follows from the Lagrangian given by the H1 norm of the
fluid velocity in n dimensions, subject to volume preservation (for n{1),

Sred=| dt l=| dt |
M

d nx
D
2

(v ivi+:2v , j
i v i

, j)& p(D&1), (8.25)

where M is the domain of the fluid and where we have restored the length-
scale, or aspect-ratio parameter, :. Varying this action at fixed x and t
gives

$Sred=| dt |
M

d nx[(vivi+:2v , j
i v i

, j) $D&(D&1) $p

+(Dvi&:2�j (Dv , j
i )) $vi]+:2 | dt �

�M

d n&1x n̂ j (Dv , j
i $vi),

(8.26)

whose natural boundary conditions on �M are

v } n̂=0 and (n̂ } {) v & n̂, (8.27)

where & denotes ``parallel to'' in the second boundary condition, which of
course is not imposed when :2 is absent. (Recall that $v in Eq. (8.26) is
arbitrary except for being tangent on the boundary. This tangency, along
with the second condition in Eq. (8.27) is sufficient for the boundary
integral in Eq. (8.26) to vanish.)

Another set of boundary conditions which will guarantee the vanishing
of the boundary term in (8.26) is that v=0 on �M (and correspondingly,
$v=0 on �M).

An interesting difficulty with the boundary conditions (8.27) is that they
do not form a Lie algebra unless the boundary is flat. We shall correct this
difficulty shortly with the inclusion of the second fundamental form of the
boundary. (See the section ``The Riemannian CH equations'' below.)
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By Eq. (7.9) or (7.32), the Euler�Poincare� equation for the action Sred

in Eq. (8.25) is

\ �
�t

+v } {+ (v&:2 2v)+(vj&:2 2vj) {v j&{ \1
2

|v|2+
:2

2
|{v| 2& p+=0,

(8.28)

where ({v) i
j=v i

, j #�vi��x j, |{v| 2#v i
, jv

, j
i =tr({v } {vT) and superscript

( v )T denotes transpose. We have also used the constraint D=1, which
as before implies incompressibility via the continuity equation for D. Requir-
ing the motion equation (8.28) to preserve div v=0 implies a Poisson equa-
tion for the pressure p with a Neumann boundary condition, which is
obtained just as in the case of incompressible ideal fluid dynamics by taking
the normal component of the motion equation evaluated at the boundary.

Properties of the Camassa�Holm Equation. Since the CH action Sred in
(8.25) is translation invariant, the Noether theorem ensures the CH equa-
tion (8.28) conserves a momentum. In fact, by the stress tensor formulae
(7.6)�(7.8), Eq. (8.28) may be rewritten as

�mi

�t
=&

�
�x j T j

i . (8.29)

In this case, the momentum density mi , i=1, 2, 3 defined in Eq. (7.7) is
given by

mi #
$l
$vi }D=1

=vi&:2 2v i , (8.30)

and the stress tensor T j
i defined in Eq. (7.8) is given by

T j
i=(vi&:2 2vi) v j&:2vk

, iv
, j
k +$ j

i p. (8.31)

Thus, Eq. (8.29) implies conservation of the total momentum,
M=�M m d 3x, provided the normal component of the stress tensor T j

i

vanishes on the boundary.
Since the CH equation (8.28) is Euler�Poincare� , it also has a corre-

sponding Kelvin�Noether circulation theorem. Namely, cf. Eq. (8.32),

d
dt �#t

(v&:2 2v) } dx=0, (8.32)

for any closed curve #t that moves with the fluid velocity v. This expression
for the Kelvin�Noether property of the CH equation in 3D is reminiscent
of corresponding expressions in wave, mean-flow interaction theory. This
correspondence suggests a physical interpretation of the :2 term in the
Kelvin�Noether circulation integral as a Lagrangian mean closure relation

66 HOLM, MARSDEN, AND RATIU



File: DISTL2 172167 . By:CV . Date:11:06:98 . Time:10:43 LOP8M. V8.B. Page 01:01
Codes: 2746 Signs: 1884 . Length: 45 pic 0 pts, 190 mm

for the pseudomomentum of the high frequency (i.e., rapidly fluctuating,
turbulent) components of the flow. In this interpretation, : corresponds to
the typical length scale at which these high frequency components become
important. See Foias, Holm, and Titi [1998] for more discussion of using
the 3D CH Eq. (8.28) as the basis for a turbulence closure model.

In three dimensions, we may use the vector identity (7.34) to re-express
the CH motion equation (8.28) in its ``curl' form, as

�
�t

(1&:2 2) v&v_({_(1&:22) v)

+{ \v } (1&:22) v&
1
2

|v|2&
:2

2
|{v|2+ p+=0. (8.33)

The inner product of v with this equation then implies conservation of
energy,

E= 1
2|

M

d 3x(v } (1&:22) v)= 1
2| d 3x( |v|2+:2 |{v|2), (8.34)

upon integrating by parts and using the boundary conditions (8.27).
Naturally, this energy is also conserved in n dimensions. In fact, Legendre
transforming the action (8.25) gives the following Hamiltonian (still
expressed in terms of the velocity, instead of the momentum density
m=$l�$v),

H=|
M

d nx _D
2

( |v| 2+:2 |{v|2)+ p(D&1)& . (8.35)

Thus, when evaluated on the constraint manifold D=1, the Lagrangian
and the Hamiltonian for the CH equation coincide in n dimensions. (This,
of course, is not unexpected for a stationary principle giving rise to
geodesic motion.)

The curl of the 3D Camassa�Holm motion equation (8.33) yields

�
�t

q=q } {v&v } {q#[v, q], where q#curl(v&:2 2v), (8.36)

and we have used incompressibility and commutativity of the divergence
and Laplacian operators. Thus, v is the transport velocity for the
generalized vorticity q and the ``vortex stretching'' term q } {v involves {v,
whose L2 norm is controlled by the conservation of energy in Eq. (8.34).
Boundedness of this norm will be useful in future analytical studies of the
3D Camassa�Holm equation; for example, in the investigation of the
Liapunov stability properties of its equilibrium solutions.
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3D Periodic CH Motion. In a three-dimensional periodic domain, the
conserved energy E in Eq. (8.34) may also be expressed as

E= 1
2 |

M

d 3x( |v| 2+:2 |curl v|2), (8.37)

upon integrating by parts and using div v=0. Thus, in the 3D periodic
case, the CH energy E may be interpreted as the sum of the kinetic energy
and the enstrophy (i.e., the L2 norm of vorticity) of the Euler fluid.

The inner product of the generalized vorticity q with the motion equa-
tion (8.33) implies conservation of helicity, for three dimensional periodic
motion. Namely, the quantity

4#|
M

d 3x(1&:22) v } curl(1&:22) v (helicity), (8.38)

is also a constant of motion for three-dimensional periodic CH motion.
From the CH vorticity equation (8.36), we see that steady 3D solutions

of the CH equation (denoted with subscript e for ``equilibrium'') are
characterized by the vector-field commutation relation [ve , qe]=0. Thus,
the velocity of a steady CH flow ve generates a volume preserving dif-
feomorphism that leaves invariant its corresponding steady generalized
vorticity qe . For example, the CH Beltrami flows for Eq. (8.33) are charac-
terized by ve=+qe , for a constant +. The CH Beltrami flows verify the
invariance property; hence, they are steady. These steady solutions are also
critical points of the sum E+4�2+ of the energy E in Eq. (8.37) and 1�2+
times the conserved helicity in Eq. (8.38). Hence, they are relative equi-
librium solutions of the CH equation. The CH Beltrami flows are divergen-
celess vector eigenfunctions of the product of the curl operator and the
Helmholtz operator, (1&:22). They are the CH analogues of ``ABC flows''
for the ideal Euler fluid.

Constitutive Properties of the CH ``Fluid.'' Physically, conservation of
the energy in Eq. (8.37) means that the CH fluid can exchange energy
between its translational, and its rotational and shear motions. One may
ask, what constitutive relation describes such a fluid?

One may verify directly that the 3D Camassa�Holm equation (8.28) in
Cartesian coordinates implies the following formula for the ``geodesic
spray'' form of the CH equations in 3D:

(1&:22) \ �
�t

+v } {+ vi

=:2(2vj)(v j
, i&v , j

i )&
�

�x j _\p&
:2

2
v i

, kv , k
i + $ j

i +2:2v j
, kv , k

i & . (8.39)
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In vector notation, this is

(1&:22) \ �
�t

+v } {+ v

=:2(2v)_curl v&div _\p&
:2

2
|{v|2+ I� +2:2 {v } {vT& , (8.40)

where I� is the unit tensor. Viewed this way, the CH fluid acceleration dv�dt
is nonlocal, nonlinear, and (as we know from the general Euler�Poincare�
theory) geodesic. Foias, Holm, and Titi [1998] show, among other things,
that the geodesic spray equation (8.40) may be rearranged into a
viscoelastic constitutive relation of Jeffreys type.

Discussion. The essential idea of the CH equation is that its specific
momentum (i.e., its momentum per unit mass) is transported by a velocity
which is smoothed by inverting the elliptic Helmholtz operator (1&:22),
where : corresponds to the length scale at which this smoothing becomes
important, i.e., when it becomes of order O(1). When the smoothing
operator (1&:22)&1 is applied to the transport velocity in Euler's equa-
tion to produce the CH equation, its effect on length scales smaller than :
is that steep gradients of the specific momentum function tend not to
steepen much further, and thin vortex tubes tend not to get much thinner
as they are transported. And, its effect on length scales that are con-
siderably larger than : is negligible. Hence, the transport of vorticity in the
CH equation is intermediate between that for the Euler equations in 2D
and 3D. As for Euler vorticity, the curl of the CH specific momentum is
convected as an active two form, but its transport velocity is the smoothed,
or filtered CH specific momentum.

The effects of this smoothing or filtering of the transport velocity in the
CH equation can be seen quite clearly from its Fourier spectral representa-
tion in the periodic case. In this case, we define mk as the kth Fourier
mode of the specific momentum m#(1&:22)v for the CH equation, so
that mk #(1+:2 |k| 2) vk . The Fourier spectral representation of the CH
equation for a periodic three-dimensional domain is expressed as

6 \ d
dt

mk &i :
p+q=k

mp

1+:2 |p|2_(q_mq )+=0, (8.41)

where 6 is the Leray projection onto Fourier modes transverse to k. (As
usual, the Leray projection ensures incompressibility.) In this Fourier
spectral representation of the CH equation, one sees that the coupling to
high modes is suppressed by the denominator when 1+:2 |p| 2>>1.
Consequently, when |p|�O(1�:), the smoothing of the transport velocity
suppresses the development of higher modes |k|�O(2 |p| ). And, it also
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suppresses the ``stochastic backscatter'' from higher modes to lower ones,
|k|=O(1). Thus, thinking of ``interaction triangles'' among the modes, one
sees that all p+q=k triangles are suppressed, when |p|�O(1�:). Hence,
the CH smoothing of the transport velocity suppresses both the forward
and backward cascades for wave numbers |p|�O(1�:), but leaves the
Euler dynamics essentially unchanged for smaller wave numbers. As we
have seen, the result is that the vortex stretching term in the dynamics of
q=curl m is mollified in the CH model and so the vortices at high wave
numbers will tend to be ``shorter and fatter'' than in the corresponding
Euler case.

When the kinetic energy terms are neglected relative to the gradient
velocity terms, the CH action Sred in (8.25) becomes

S�
red=| dt l=| dt |

M

d nx _D
2

v i
, j v

, j
i & p(D&1)& , (8.42)

whose Euler�Poincare� equation in 3D implies the following,

�
�t

2v&v_({_2v)+{ \v } 2v+
1
2

|{v|2& p+=0. (8.43)

This equation is the ``high wave number limit'' of the 3D Camassa�Holm
equation (8.33). Scale invariance is restored in this limiting equation and
its corresponding group invariant (e.g., self-similar) solutions may be
illuminating.

The Riemannian CH Equations. One can formulate the CH equations
on a general Riemannian manifold, possibly with boundary. Although this
will be the subject of future papers, we will make some comments about
some of the features (some of them conjectural) here.

We start with a smooth, oriented, compact Riemannian manifold M,
possibly with a smooth boundary. We first define the group DiffCH to be
the group of diffeomorphisms ': M � M of class H s, where s>(n�2)+2
with the boundary condition that the tangent map T': TM � TM takes the
outward normal direction to the boundary �M at a point x # M to the out-
ward normal direction at the point '(x). In the incompressible case one
imposes the condition that each ' be volume preserving. We first conjecture
that this group is a smooth manifold and is a Lie group (in the same sense
as in Ebin and Marsden [1970]) with Lie algebra the set of vector fields v
on M which are tangent to the boundary of M and that satisfy the boundary
condition

({n v, u) =S(u, v)
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for all vectors u tangent to the boundary. Here S(u, v) is the second funda-
mental form of the boundary. This condition on the boundary is the CH
analogue to the condition of parallel to the boundary in the case of the
Euler equations. The condition comes about by differentiation of the condi-
tion on ' in the definition of DiffCH using a routine calculation.

Notice that the boundary conditions are different from those previously
(see Eq. (8.27). This appears, however, to be needed for the group theoretic
version of the equations. Now we put a right invariant Lagrangian on
DiffCH which, at the identity, is given by

L(v)= 1
2 |

M
(&v&2+&{v&2) d+& 1

2 �
�M

S(u, u) dA, (8.44)

where {v is the covariant derivative of v, d+ is the Riemannian volume
element, and dA is the area element of the boundary. We are using ter-
minology appropriate to the case in which M is three dimensional, but of
course there is no restriction on the dimension of M. Also, &{v&2 denotes
the norm in the sense of the full Riemannian contraction of the tensor {v.
The associated Laplace operator is usually called the rough Laplacian.

At this point there are some choices one can make. One can use a dif-
ferent H1 metric built out of thinking of v as a one form and using the d
and $ operators and the corresponding Laplace deRham operator. This
leads to a slightly different system in general, but one that has similar
analytical properties. One can also use the group Diff0 of diffeomorphisms
that leave the boundary pointwise fixed, corresponding to the boundary
conditions v=0 on �M (This group was studied in Ebin and Marsden
[1970]). In this case, one omits the boundary integral in (8.44).

The Riemannian CH equations are, by definition, the Euler�Poincare�
equations for this group and this Lagrangian. The boundary term in the
Lagrangian is designed to make the boundary conditions in the resulting
equations come out agreeing with those for the Lie algebra of the group
DiffCH . Apart from the boundary conditions, the resulting equations agree
with the ones we developed in Euclidean space, but in general one replaces
the Laplacian with the rough Laplacian. Note that since the Lagrangian is
quadratic in v, the equations on DiffCH are geodesic equations (possibly
with respect to an indefinite metric).

Conjecture 8.1. As in the case of the Euler equations (Ebin and
Marsden [1970]), the geodesic spray of the Riemannian CH equations is
smooth if s>(n�2)+2.

This conjecture is based on a direct examination of the expression for the
spray of the Riemannian CH equations and seeing that there is no
derivative loss. If this is true, then other analytic things, including results
on the limit of zero viscosity (or viscoelasticity) also hold. We also note
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that because energy conservation involves a stronger norm than in the
Euler equations for ideal flow, one expects other analytic properties of the
Riemannian CH equation to be improved. This would include results on
stability and long time existence.

Another consequence of this would be that the spray of the incom-
pressible Riemannian CH equations would also be smooth. This follows
since the projection map is smooth and the fact that the spray of the
incompressible equations is given by the composition of the spray of the
compressible ones and the tangent of the projection map. (These facts are
proved in Ebin and Marsden [1970]).

As we have mentioned, all of these things will be explored in detail in
other publications.

2D Camassa�Holm Equation. In two dimensions, the curl of the Euler�
Poincare� motion equation (8.33) produces a scalar relation for potential
vorticity convection, namely,

�q
�t

+v } {q=0, where q#(1&:22) 2� for 2D CH. (8.45)

In terms of the stream function �, with v=ẑ_{�, the boundary conditions
(8.27) in two dimensions with ŝ=ẑ_n̂ become

�=const and n̂ } {{� } n̂=0 O 2�=0 on the boundary.

(8.46)

Potential vorticity convection (8.45) for the 2D CH equation, combined
with incompressibility and the first boundary condition in (8.27) imply
conservation of the following quantity,

C8 #| d 2x 8(q), (8.47)

for any suitably well-behaved function 8. (This is a Casimir function, in the
Lie�Poisson bracket formulation.) Substituting v=ẑ_{� and using the
divergence theorem yields an expression for the kinetic energy Lagrangian
for the 2D CH equation in terms of the stream function, �. Namely,

E= 1
2 | d 2x(v } (1&:22) v)= 1

2 | d 2x({� } (1&:22) {�)

= 1
2 :

i

�(i) �
#(i)

ds
�

�n
(1&:22) �(i)& 1

2 | d 2x(�(1&:22) 2�), (8.48)

where we sum over the connected components of the boundary #(i) and use
�(i) constant on the i th component. Thus, solutions of the CH equation
(8.28) in two dimensions optimize the integrated product of the stream
function and potential vorticity, constrained by the circulation of v&:2 2v
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on each connected component of the boundary. The Lagrange multiplier
for this circulation is the corresponding boundary component's (constant)
stream function.

Steady CH Solutions in Two Dimensions. Steady solutions of the
2D CH equation (8.45) with boundary conditions (8.46) satisfy

ẑ } {�e_{qe=J(qe , �e)=0, for qe #(1&:22) 2�e . (8.49)

Thus, steady CH solutions exist when there is a functional relation between
the potential vorticity qe and its associated stream function �e . For
example, one could have qe=F(�e) for function F. In particular, the linear
steady flows satisfy

qe=2(1&:22) �e=&|k|2 (1+:2 |k|2) �e . (8.50)

These are sines and cosines with wave number k for periodic boundary
conditions. The corresponding fluid velocity for any of these steady 2D CH
solutions is found from ve=ẑ_{�e .

As another example, the point potential-vortex solution centered at
z$=x$+iy$ in the infinite xy-plane has stream function

�( |z&z$| )=log( |z&z$| )+K0( |z&z$|�:), (8.51)

where K0( |z&z$|�:) is the Bessel function of the second kind. This stream
function satisfies

q=2(1&:22) �=2?$( |z&z$| ),

where 2 is the Laplacian operator in the plane and $( |z&z$| ) is the Dirac
delta function. (The proof uses 2 log( |z&z$| )=2?$( |z&z$| ) and (1&:22)
K0( |z&z$|�:)=2?$( |z&z$| ).) The circular potential-vortex patch solution,
q=2(1&:22) �=C=const for |z&z$|�a and q=0 for |z&z$|>a, has
stream function

�=C \ |z&z$| 2

4
+1+ for |z&z$|�a,

(8.52)

�=log( |z&z$| )+:2K0( |z&z$|�:) for |z&z$|�a,

where the constant C is chosen so the velocity is continuous at |z&z$|=a.
The interior of this solution is also a uniformly rotating vortex patch.
These special potential-vortex solutions illustrate the ``screening'' in the
vortex interaction dynamics for the 2D CH equation introduced by the
Helmholtz operator (1&:22), which modifies the momentum density of
the 2D CH flow relative to the standard incompressible Euler equations in
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the plane. As we have seen, the corresponding screening length : is an
additional parameter in the model.

Quasi-geostrophic Analogue of CH in Two Dimensions. We extend the
nondimensional QG action principle in Eq. (8.8) for QG dynamics in a
periodic two-dimensional domain to include CH :2 terms, as follows,

Sred =| dt l

=| dt | dx1 dx2 _=
2

Dv } (1&F2&1&:22) v+Dv } R&�(D&1)& .

(8.53)

The corresponding Euler�Poincare� equation is to be compared to the QG
motion equation (8.10). We find,

=
�
�t

(1&F2&1&:22) v&v_curl(=(1&F2&1&:22) v+R)

+{ \�+
=
2

v } (1&F2&1&:22) v+=0. (8.54)

The curl of this equation yields

=
�q
�t

+v } {(=q+ f )=0, (8.55)

where the potential vorticity q is now given by

q=ẑ } curl(1&F2&1&:22) v, (8.56)

and we choose

f#ẑ } curl R=1+=;x2 . (8.57)

The constraint D=1 implies { } v=0 as usual and when v=ẑ_{� is sub-
stituted, the equation for q=2(1&:22) �&F� yields

�
�t

(2(1&:22) �&F�)+[�, 2(1&:22) �]+;
��
�x1

=0. (8.58)
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Here [a, b]#�(a, b)��(x1 , x2)=J(a, b) is the Jacobi bracket (Jacobian) for
functions a and b defined on the two dimensional domain. Steady solutions
of the QG�CH equation (8.55) satisfy

J(qe+;x2 , �e)=0, for qe=2(1&:22) �e&F�e . (8.59)

The dispersion relation for plane-wave solutions of equation (8.58) with
frequency | and wavenumber k is

|(k)=
&;k1

F+|k| 2 (1+:2 |k| 2)
. (8.60)

Such plane-wave solutions are analogous to Rossby waves in QG. As with
QG Rossby waves, these plane-wave solutions are nonlinear solutions
of equation (8.58) in a two dimensional periodic domain. If we choose
F=O(1) and :2=o(1), then the effect of the :2 term in this dispersion
relation is to significantly reduce the oscillation frequency and propagation
speeds of those waves at wave numbers greater than about :&1. Thus, such
short waves are suppressed, and the emerging dynamics of this modified
QG theory will tend to possess significant activity only at length scales
larger than :. Apparently the dispersion relation for the dynamics at these
larger length scales will faithfully approximate the corresponding QG
dynamics at these scales. This scenario is, of course, consistent with our
earlier discussion of the wave number dynamics of the CH solutions in
three dimensions.

APPENDIX

Left Representation and Right-Invariant Lagrangian. There is a version
of this theorem for right invariant Lagrangians, but with the representation
of G on V still on the left. The proof is, of course, identical so we shall only
state this theorem. The set-up is the following:

v There is a left representation of Lie group G on the vector space V
and G acts in the natural way on the right on TG_V*: (vg , a)h=
(vg h, h&1a).

v Assume that the function L: TG_V* � R is right G-invariant.

v In particular, if a0 # V*, define the Lagrangian La0
: TG � R by

La0
(vg)=L(vg , a0). Then La0

is right invariant under the lift to TG of the
right action of Ga0

on G.

v Right G-invariance of L permits us to define l : g_V* � R by

l(vg g&1, ga0)=L(vg , a0).
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Conversely, this relation defines for any l : g_V* � R a right G-invariant
function L: TG_V* � R.

v For a curve g(t) # G, let !(t) :=g* (t) g(t)&1 and define the curve
a(t) as the unique solution of the linear differential equation with time
dependent coefficients a* (t)=!(t)a(t) with initial condition a(0)=a0 . The
solution can be equivalently written as a(t)= g(t) a0 .

Theorem 8.2. The following are equivalent:

(i) Hamilton's variational principle

$ |
t2

t1

La0
(g(t), g* (t)) dt=0 (8.61)

holds, for variations $g(t) of g(t) vanishing at the endpoints.

(ii) g(t) satisfies the Euler�Lagrange equations for La0
on G.

(iii) The constrained variational principle

$ |
t1

t1

l(!(t), a(t)) dt=0 (8.62)

holds on g_V*, using variations of the form

$!='* &[!, '], $a='a, (8.63)

where '(t) # g vanishes at the endpoints.

(iv) The Euler�Poincare� equations hold on g_V*

d
dt

$l
$!

=&ad!*
$l
$!

&\ $l
$a+ h a. (8.64)

Right Representation and Left-Invariant Lagrangian. The set up is as
follows:

v There is a right representation of Lie group G on the vector space
V and G acts in the natural way on the left on TG_V*: h(vg , a)=
(hvg , ah&1).

v Assume that the function L: TG_V* � R is left G-invariant.

v In particular, if a0 # V*, define the Lagrangian La0
: TG � R by

La0
(vg)=L(vg , a0). Then La0

is left invariant under the lift to TG of the left
action of Ga0

on G.
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v Left G-invariance of L permits us to define l : g_V* � R by

l(g&1vg , a0 g)=L(vg , a0).

Conversely, this relation defines for any l : g_V* � R a left G-invariant
function L: TG_V* � R.

v For a curve g(t) # G, let !(t) :=g(t)&1 g* (t) and define the curve
a(t) as the unique solution of the linear differential equation with time
dependent coefficients a* (t)=a(t) !(t) with initial condition a(0)=a0 . The
solution can be equivalently written as a(t)=a0 g(t).

Theorem 8.3. The following are equivalent:

(i) Hamilton's variational principle

$ |
t2

t1

La0
(g(t), g* (t)) dt=0 (8.65)

holds, for variations $g(t) of g(t) vanishing at the endpoints.

(ii) g(t) satisfies the Euler-Lagrange equations for La0
on G.

(iii) The constrained variational principle

$ |
t2

t1

l(!(t), a(t)) dt=0 (8.66)

holds on g_V*, using variations of the form

$!='* +[!, '], $a=a', (8.67)

where '(t) # g vanishes at the endpoints.

(iv) The Euler�Poincare� equations hold on g_V*

d
dt

$l
$!

=ad!*
$l
$!

&
$l
$a

h a. (8.68)
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